6-Oxa isosteres of anacardic acids as potent inhibitors of bacterial histidine protein kinase (HPK)-mediated two-component regulatory systems

1999 ◽  
Vol 9 (20) ◽  
pp. 2947-2952 ◽  
Author(s):  
Ramesh M. Kanojia ◽  
William Murray ◽  
Jeffrey Bernstein ◽  
Jeffrey Fernandez ◽  
Barbara D. Foleno ◽  
...  
2005 ◽  
Vol 71 (10) ◽  
pp. 5794-5804 ◽  
Author(s):  
M. Andrea Azcarate-Peril ◽  
Olivia McAuliffe ◽  
Eric Altermann ◽  
Sonja Lick ◽  
W. Michael Russell ◽  
...  

ABSTRACT Two-component regulatory systems are one primary mechanism for environmental sensing and signal transduction. Annotation of the complete genome sequence of the probiotic bacterium Lactobacillus acidophilus NCFM revealed nine two-component regulatory systems. In this study, the histidine protein kinase of a two-component regulatory system (LBA1524HPK-LBA1525RR), similar to the acid-related system lisRK from Listeria monocytogenes (P. D. Cotter et al., J. Bacteriol. 181:6840-6843, 1999), was insertionally inactivated. A whole-genome microarray containing 97.4% of the annotated genes of L. acidophilus was used to compare genome-wide patterns of transcription at various pHs between the control and the histidine protein kinase mutant. The expression pattern of approximately 80 genes was affected by the LBA1524HPK mutation. Putative LBA1525RR target loci included two oligopeptide-transport systems present in the L. acidophilus genome, other components of the proteolytic system, and a LuxS homolog, suspected of participating in synthesis of the AI-2 signaling compound. The mutant exhibited lower tolerance to acid and ethanol in logarithmic-phase cells and poor acidification rates in milk. Supplementation of milk with Casamino Acids essentially restored the acid-producing ability of the mutant, providing additional evidence for a role of this two component system in regulating proteolytic activity in L. acidophilus.


2003 ◽  
Vol 278 (40) ◽  
pp. 39185-39188 ◽  
Author(s):  
Lucia Pappalardo ◽  
Ingo G. Janausch ◽  
Vinesh Vijayan ◽  
Eva Zientz ◽  
Jochen Junker ◽  
...  

Author(s):  
Lucindo Cardoso de Pina ◽  
Fernanda Stephens Hermes da Silva ◽  
Teca Calcagno Galvão ◽  
Heidi Pauer ◽  
Rosana Barreto Rocha Ferreira ◽  
...  

Author(s):  
Robert B. Bourret ◽  
Emily N. Kennedy ◽  
Clay A. Foster ◽  
Victoria E. Sepúlveda ◽  
William E. Goldman

2006 ◽  
Vol 189 (4) ◽  
pp. 1342-1350 ◽  
Author(s):  
Stuart J. McKessar ◽  
Regine Hakenbeck

ABSTRACT The two-component system TCS08 is one of the regulatory systems that is important for virulence of Streptococcus pneumoniae. In order to investigate the TCS08 regulon, we have analyzed transcription profiles of mutants derived from S. pneumoniae R6 by microarray analysis. Since deletion mutants are often without a significant phenotype, we constructed a mutation in the histidine kinase HK08, T133P, in analogy to the phosphatase mutation T230P in the H box of the S. pneumoniae CiaH kinase described recently (D. Zähner, K. Kaminski, M. van der Linden, T. Mascher, M. Merai, and R. Hakenbeck, J. Mol. Microbiol. Biotechnol. 4:211-216, 2002). In addition, a deletion mutation was constructed in rr08, encoding the cognate response regulator. The most heavily suppressed genes in the hk08 mutant were spr0276 to spr0282, encoding a putative cellobiose phosphoenolpyruvate sugar phosphotransferase system (PTS). Whereas the R6 Smr parent strain and the Δrr08 mutant readily grew on cellobiose, the hk08 mutant and selected mutants with deletions in the PTS cluster did not, strongly suggesting that TCS08 is involved in the catabolism of cellobiose. Homologues of the TCS08 system were found in closely related streptococci and other gram-positive cocci. However, the genes spr0276 to spr0282, encoding the putative cellobiose PTS, represent a genomic island in S. pneumoniae and homologues were found in Streptococcus gordonii only, suggesting that this system might contribute to the pathogenicity potential of the pneumococcus.


mSphere ◽  
2021 ◽  
Author(s):  
Robert B. Bourret ◽  
Clay A. Foster ◽  
William E. Goldman

Fungal two-component regulatory systems incorporate receiver domains into hybrid histidine kinases (HHKs) and response regulators. We constructed a nonredundant database of 670 fungal receiver domain sequences from 51 species sampled from nine fungal phyla.


Sign in / Sign up

Export Citation Format

Share Document