transcription profiles
Recently Published Documents


TOTAL DOCUMENTS

300
(FIVE YEARS 91)

H-INDEX

42
(FIVE YEARS 5)

Author(s):  
Sung-Hyun Park ◽  
Yuting Lu ◽  
Yongzhao Shao ◽  
Colette Prophete ◽  
Lori Horton ◽  
...  

First responders (FR) exposed to the World Trade Center (WTC) Ground Zero air over the first week after the 9/11 disaster have an increased heart disease incidence compared to unexposed FR and the general population. To test if WTC dusts were causative agents, rats were exposed to WTC dusts (under isoflurane [ISO] anesthesia) 2 h/day on 2 consecutive days; controls received air/ISO or air only. Hearts were collected 1, 30, 240, and 360 d post-exposure, left ventricle total RNA was extracted, and transcription profiles were obtained. The data showed that differentially expressed genes (DEG) for WTC vs. ISO rats did not reach any significance with a false discovery rate (FDR) < 0.05 at days 1, 30, and 240, indicating that the dusts did not impart effects beyond any from ISO. However, at day 360, 14 DEG with a low FDR were identified, reflecting potential long-term effects from WTC dust alone, and the majority of these DEG have been implicated as having an impact on heart functions. Furthermore, the functional gene set enrichment analysis (GSEA) data at day 360 showed that WTC dust could potentially impact the myocardial energy metabolism via PPAR signaling and heart valve development. This is the first study showing that WTC dust could significantly affect some genes that are associated with the heart/CV system, in the long term. Even > 20 years after the 9/11 disaster, this has potentially important implications for those FR exposed repeatedly at Ground Zero over the first week after the buildings collapsed.


2021 ◽  
Author(s):  
Yaru Wang ◽  
Ying Wang ◽  
Fangman Li ◽  
Lele Shang ◽  
Jinbao Tao ◽  
...  

Abstract Ascorbic acid (AsA) is an important nutrient component contributing to major flavor value of tomato fruit and human health. Although transcription regulation of AsA biosynthetic genes have been well demonstrated, epigenetic modification underlying AsA accumulation remains unclear. In this study, we exposed immature tomato fruits to a methyltransferase inhibitor (5-azacytidine) and detected the impacts on AsA accumulation. Inhibition of DNA methylation enhanced AsA accumulation in tomato leaves and fruits. We further isolated a AsA biosynthetic gene, SlGalUR5, which encodes a D-galacturonic acid reductase. SlGalUR5 showed reduced DNA methylation levels and higher transcription levels in Slmet1 mutant while have converse pattern in Sldml2 mutant. 5-azacytidine treatment significantly decreased DNA methylation levels of SlGalUR5 in fruits. Conversely, transcription profiles of SlGalUR5 and enzyme activity of GalUR were enhanced in 5-azacytidine–treated fruits. Our finding revealed a new insight into epigenome modification of SlGalUR5 involved in ascorbic acid accumulation and provide a potential means of increasing AsA levels for tomato breeding.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12697
Author(s):  
Zhengzhong Ni ◽  
Jun Lu ◽  
Weiyi Huang ◽  
Hanif Khan ◽  
Xuejun Wu ◽  
...  

Background Hepatocellular carcinoma (HCC) is one of the most common malignancies around the world. Among the risk factors involved in liver carcinogenesis, hepatitis B virus (HBV) X protein (HBx) is considered to be a key regulator in hepatocarcinogenesis. Whether HBx promotes or protects against HCC remains controversial, therefore exploring new HBx-associated genes is still important. Methods HBx was overexpressed in HepG2, HepG2.2.15 and SMMC-7721 cell lines, primary mouse hepatocytes and livers of C57BL/6N mice. High-throughput RNA sequencing profiling of HepG2 cells with HBx overexpression and related differentially-expressed genes (DEGs), pathway enrichment analysis, protein-protein interaction networks (PPIs), overlapping analysis were conducted. In addition, Gene Expression Omnibus (GEO) and proteomic datasets of HBV-positive HCC datasets were used to verify the expression and prognosis of selected DEGs. Finally, we also evaluated the known oncogenic role of HBx by oncogenic array analysis. Results A total of 523 DEGs were obtained from HBx-overexpressing HepG2 cells. Twelve DEGs were identified and validated in cells transiently transfected with HBx and three datasets of HBV-positive HCC transcription profiles. In addition, using the Kaplan-Meier plotter database, the expression levels of the twelve different genes were further analyzed to predict patient outcomes. Conclusion Among the 12 identified HBx-associated hub genes, HBV-positive HCC patients expressing ARG1 and TAT showed a good overall survival (OS) and relapse-free survival (RFS). Thus, ARG1 and TAT expression could be potential prognostic markers.


Author(s):  
Liyuan Wang ◽  
Tianyang Yu ◽  
Xiaohui Zhang ◽  
Xiaojun Cai ◽  
He Sun

Primary open-angle glaucoma (POAG) is a progressive optic neuropathy and its damage to vision is irreversible. Therefore, early diagnosis assisted by biomarkers is essential. Although there were multiple researches on the identification of POAG biomarkers, few studies systematically revealed the transcriptome dysregulation mechanism of POAG from the perspective of pre- and post-transcription of genes. Here, we have collected multiple sets of POAG’s aqueous humor (AH) tissue transcription profiles covering long non-coding RNA (lncRNA), mRNA and mircoRNA (miRNA). Through differential expression analysis, we identified thousands of significant differentially expressed genes (DEGs) between the AH tissue of POAG and non-glaucoma. Further, the DEGs were used to construct a competing endogenous RNA (ceRNA) regulatory network and 1,653 qualified lncRNA-miRNA-mRNA regulatory units were identified. Two ceRNA regulatory subnets were identified based on the random walk algorithm and revealed to be involved in the regulation of multiple complex diseases. At the pre-transcriptional regulation level, a transcriptional regulatory network was constructed and three transcription factors (FOS, ATF4, and RELB) were identified to regulate the expression of multiple genes and participate in the regulation of T cells. Moreover, we revealed the immune desert status of AH tissue for POAG patients based on immune infiltration analysis and identified a specific AL590666.2-hsa−miR−339−5p-UROD axis can be used as a biomarker of POAG. Taken together, the identification of regulatory mechanisms and biomarkers will contribute to the individualized diagnosis and treatment for POAG.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi103-vi103
Author(s):  
Changlin Yang ◽  
Vrunda Trivedi ◽  
Kyle Dyson ◽  
Oleg Yegorov ◽  
Duane Mitchell

Abstract BACKGROUND Cancer immunogenomics represents a complementary approach to the application of genomics in developing novel immunotherapies. We performed a multi-faceted computer algorithm, the Open Reading Frame Antigen Network (O.R.A.N.), on medulloblastoma transcription profiles and predicted antigens across a broad array of antigen classes. METHODS Patient-specific HLA haplotypes were called via customized Optitype and Phlat algorithms. Preclinical models- sonic hedgehog driven (Ptch1) and Group 3 MYC-driven (NSC) medulloblastoma were derived from C57BL6 murine strain with known MHC haplotypes. Only expressed mutations such as single nucleotide variations, small indels, gene fusions, and personalized TAAs were used for antigenic epitope predictions. Patient-specific or murine tumor associated antigens (TAA) were selected only if expressed &gt;1 transcript per million (TPM) in tumor and the standardized expression across a human tissue database (29 organs or sub-regions, n=9,141) or a mouse normal tissue database (ENCODE, n=99) was below 1 TPM, respectively. TAA sequences were passed through eight MHC class I and four MHC class II affinity algorithms. All epitopes were screened against a customized human or murine proteomic library to guarantee that epitopes were not shared by other expressed isoforms or genes. Immune deconvolution with single cell RNASeq integration was leveraged for teasing out medulloblastoma immunologic landscape. RESULTS MB patients harbor MHC-I restricted 1.9 SNV, 0.1 Indel, 0.5 gene fusions and MHC-II restricted 2.5 SNV, 0.1 Indel and 0.5 gene fusion. 79.4% patients have at least 1 neoantigen. 88.2% patients have at least one immunogenic TAA. Importantly, cancer testis antigens and previously unappreciated neurodevelopmental antigens were found expressed across all medulloblastoma subgroups. We predicted 6 neoantigens and 14 TAAs for murine NSC tumor and 19 neoantigens and 13 TAAs for Ptch1 tumor. CONCULSION: Using a custom antigen prediction pipeline, we identified potential human and murine tumor rejection antigens with important implications for development of medulloblastoma cellular therapies.


iScience ◽  
2021 ◽  
pp. 103238
Author(s):  
V. Alexandra Moser ◽  
Michael J. Workman ◽  
Samantha J. Hurwitz ◽  
Rachel M. Lipman ◽  
Christian J. Pike ◽  
...  

2021 ◽  
Author(s):  
Ipek Ilgin Gönenc ◽  
Alexander Wolff ◽  
Julia Schmidt ◽  
Arne Zibat ◽  
Christian Müller ◽  
...  

AbstractBloom syndrome (BS) is an autosomal recessive disease clinically characterized by primary microcephaly, growth deficiency, immunodeficiency, and predisposition to cancer. It is mainly caused by biallelic loss-of-function mutations in the BLM gene, which encodes the BLM helicase, acting in DNA replication and repair processes. Here, we describe the gene expression profiles of three BS fibroblast cell lines harboring causative, biallelic truncating mutations obtained by single-cell (sc) transcriptome analysis. We compared the scRNA transcription profiles from three BS patient cell lines to two age-matched wild-type controls and observed specific deregulation of gene sets related to the molecular processes characteristically affected in BS, such as mitosis, chromosome segregation, cell cycle regulation, and genomic instability. We also found specific upregulation of genes of the Fanconi anemia pathway, in particular FANCM, FANCD2, and FANCI, which encode known interaction partners of BLM. The significant deregulation of genes associated with inherited forms of primary microcephaly observed in our study might explain in part the molecular pathogenesis of microcephaly in BS, one of the main clinical characteristics in patients. Finally, our data provide first evidence of a novel link between BLM dysfunction and transcriptional changes in condensin complex I and II genes. Overall, our study provides novel insights into gene expression profiles in BS on a single-cell level, linking specific genes and pathways to BLM dysfunction.


2021 ◽  
Vol 12 ◽  
Author(s):  
Saadia Khilji ◽  
Yuan Li ◽  
Jihong Chen ◽  
Qiao Li

Stem cells represent a key resource in regenerative medicine, however, there is a critical need for pharmacological modulators to promote efficient conversion of stem cells into a myogenic lineage. We have previously shown that bexarotene, an agonist of retinoid X receptor (RXR) approved for cancer therapy, promotes the specification and differentiation of skeletal muscle progenitors. To decipher the molecular regulation of rexinoid signaling in myogenic differentiation, we have integrated RNA-seq transcription profiles with ChIP-seq of H4K8, H3K9, H3K18, H3K27 acetylation, and H3K27 methylation in addition to that of histone acetyl-transferase p300 in rexinoid-promoted myoblast differentiation. Here, we provide details regarding data collection, validation and omics integration analyses to offer strategies for future data application and replication. Our analyses also reveal molecular pathways underlying different patterns of gene expression and p300-associated histone acetylation at distinct chromatin states in rexinoid-enhanced myoblast differentiation. These datasets can be repurposed for future studies to examine the relationship between signaling molecules, chromatin modifiers and histone acetylation in myogenic regulation, providing a framework for discovery and functional characterization of muscle-specific loci.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Long Liu ◽  
Jingze Zhang ◽  
Mei Wu ◽  
Haiming Xu

Abstract Background To illustrate the mechanism of miRNA and mRNA in coronary artery diseasen (CAD), differentially expressed microRNAs (DEmiRNAs) and genes (DEGs) were analyzed. Methods The mRNA transcription profiles of GSE20680 (including 87 blood samples of CAD and 52 blood samples of control), GSE20681 (including 99 blood samples of CAD and 99 blood samples of control) and GSE12288 (including 110 blood samples of CAD and 112 blood samples of control) and the miRNA transcription profiles of GSE59421 (including 33 blood samples of CAD and 37 blood samples of control), GSE49823 (including 12 blood samples of CAD and 12 blood samples of control) and GSE28858 (including 13 blood samples of CAD and 13 blood samples of control) were downloaded from Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/). Then, the homogenous expressed mRNAs and miRNAs across the three mRNA transcription profiles and three miRNA transcription profiles were screened using the Fishers exact test in MetaDE. ES package. The weighted gene co-expression network analysis (WGCNA) was used to analyze gene modules. Additionally, the integrated miRNAs–targets regulatory network using the DEmiRNA and their targets was constructed using Cytoscape. Results A total of 1201 homogenously statistically significant DEGs were identified including 879 up-regulated and 322 down-regulated DEGs, while a total of 47 homogenously statistically significant DEmiRNAs including 37 up-regulated and 10 down-regulated DEmiRNAs in CAD compared with the controls across the three mRNA transcription profiles and the three miRNA transcription profiles. A total of 5067 genes were clustered into 9 modules in the training dataset, among which, 8 modules were validated. In the miRNAs-targets network, there existed 267 interaction relationships among 5 miRNAs (hsa-miR-361-5p, hsa-miR-139-5p, hsa-miR-146b-5p, hsa-miR-502-5p and hsa-miR-501-5p) and 213 targets. CAV1 could be the target of hsa-miR-361-5 while HSF2 was the target of both hsa-miR-361-5p and hsa-miR-146b-5p. CAV1 was significantly enriched in the GO term of regulation of cell proliferation. Conclusion hsa-miR-361-5p, has-miR-146b-5p, CAV1 and HSF2 could play an important role in CAD.


Sign in / Sign up

Export Citation Format

Share Document