scholarly journals Serendipity meets precision: the integration of structure-based drug design and combinatorial chemistry for efficient drug discovery

Structure ◽  
1997 ◽  
Vol 5 (3) ◽  
pp. 319-324 ◽  
Author(s):  
F Raymond Salemme ◽  
John Spurlino ◽  
Roger Bone
2020 ◽  
Vol 20 (19) ◽  
pp. 1651-1660
Author(s):  
Anuraj Nayarisseri

Drug discovery is one of the most complicated processes and establishment of a single drug may require multidisciplinary attempts to design efficient and commercially viable drugs. The main purpose of drug design is to identify a chemical compound or inhibitor that can bind to an active site of a specific cavity on a target protein. The traditional drug design methods involved various experimental based approaches including random screening of chemicals found in nature or can be synthesized directly in chemical laboratories. Except for the long cycle design and time, high cost is also the major issue of concern. Modernized computer-based algorithm including structure-based drug design has accelerated the drug design and discovery process adequately. Surprisingly from the past decade remarkable progress has been made concerned with all area of drug design and discovery. CADD (Computer Aided Drug Designing) based tools shorten the conventional cycle size and also generate chemically more stable and worthy compounds and hence reduce the drug discovery cost. This special edition of editorial comprises the combination of seven research and review articles set emphasis especially on the computational approaches along with the experimental approaches using a chemical synthesizing for the binding affinity in chemical biology and discovery as a salient used in de-novo drug designing. This set of articles exfoliates the role that systems biology and the evaluation of ligand affinity in drug design and discovery for the future.


2018 ◽  
Author(s):  
Traci Clymer ◽  
Vanessa Vargas ◽  
Eric Corcoran ◽  
Robin Kleinberg ◽  
Jakub Kostal

Chemicals are the basis of our society and economy, yet many existing chemicals are known to have unintended adverse effects on human and environmental health. Testing all existing and new chemicals on animals is both economically and ethically unfeasible. In this paper, a new in silico framework is presented that affords redesign of existing hazardous chemicals in commerce based on specific molecular initiating events in their adverse outcomes pathways. Our approach is based on a successful methodology implemented in computational drug discovery, and promises to dramatically lower costs associated with new chemical development by synergistically addressing chemical function and safety at the design stage. <br>


Author(s):  
Sanchaita Rajkhowa ◽  
Ramesh C. Deka

Molecular docking is a key tool in structural biology and computer-assisted drug design. Molecular docking is a method which predicts the preferred orientation of a ligand when bound in an active site to form a stable complex. It is the most common method used as a structure-based drug design. Here, the authors intend to discuss the various types of docking methods and their development and applications in modern drug discovery. The important basic theories such as sampling algorithm and scoring functions have been discussed briefly. The performances of the different available docking software have also been discussed. This chapter also includes some application examples of docking studies in modern drug discovery such as targeted drug delivery using carbon nanotubes, docking of nucleic acids to find the binding modes and a comparative study between high-throughput screening and structure-based virtual screening.


2014 ◽  
Vol 13 (2) ◽  
pp. 87-108 ◽  
Author(s):  
Pierfausto Seneci ◽  
Giorgio Fassina ◽  
Vladimir Frecer ◽  
Stanislav Miertus

Abstract The review will focus on the aspects of combinatorial chemistry and technologies that are more relevant in the modern pharmaceutical process. An historical, critical introduction is followed by three chapters, dealing with the use of combinatorial chemistry/high throughput synthesis in medicinal chemistry; the rational design of combinatorial libraries using computer-assisted combinatorial drug design; and the use of combinatorial technologies in biotechnology. The impact of “combinatorial thinking” in drug discovery in general, and in the examples reported in details, is critically discussed. Finally, an expert opinion on current and future trends in combinatorial chemistry and combinatorial technologies is provided.


2018 ◽  
Vol 8 (5) ◽  
pp. 504-509 ◽  
Author(s):  
Surabhi Surabhi ◽  
BK Singh

Discovery and development of a new drug is generally known as a very complex process which takes a lot of time and resources. So now a day’s computer aided drug design approaches are used very widely to increase the efficiency of the drug discovery and development course. Various approaches of CADD are evaluated as promising techniques according to their need, in between all these structure-based drug design and ligand-based drug design approaches are known as very efficient and powerful techniques in drug discovery and development. These both methods can be applied with molecular docking to virtual screening for lead identification and optimization. In the recent times computational tools are widely used in pharmaceutical industries and research areas to improve effectiveness and efficacy of drug discovery and development pipeline. In this article we give an overview of computational approaches, which is inventive process of finding novel leads and aid in the process of drug discovery and development research. Keywords: computer aided drug discovery, structure-based drug design, ligand-based drug design, virtual screening and molecular docking


2021 ◽  
Vol 219 (1) ◽  
Author(s):  
Li Wang ◽  
Michael A. Crackower ◽  
Hao Wu

Inflammasome proteins play an important role in many diseases of high unmet need, making them attractive drug targets. However, drug discovery for inflammasome proteins has been challenging in part due to the difficulty in solving high-resolution structures using cryo-EM or crystallography. Recent advances in the structural biology of NLRP3 and NLRP1 have provided the first set of data that proves a promise for structure-based drug design for this important family of targets.


Author(s):  
Gurusamy Mariappan ◽  
Anju Kumari

Virtual screening plays an important role in the modern drug discovery process. The pharma companies invest huge amounts of money and time in drug discovery and screening. However, at the final stage of clinical trials, several molecules fail, which results in a large financial loss. To overcome this, a virtual screening tool was developed with super predictive power. The virtual screening tool is not only restricted tool small molecules but also to macromolecules such as protein, enzyme, receptors, etc. This gives an insight into structure-based and Ligand-based drug design. VS gives reliable information to direct the process of drug discovery (e.g., when the 3D image of the receptor is known, structure-based drug design is recommended). The pharmacophore-based model is advisable when the information about the receptor or any macromolecule is unknown. In this ADME, parameters such as Log P, bioavailability, and QSAR can be used as filters. This chapter shows both models with various representative examples that facilitate the scientist to use computational screening tools in modern drug discovery processes.


Sign in / Sign up

Export Citation Format

Share Document