Hydrothermal synthesis of transition metal oxides under mild conditions

1996 ◽  
Vol 1 (2) ◽  
pp. 227-232 ◽  
Author(s):  
M Stanley Whittingham
2007 ◽  
Vol 248 (1) ◽  
pp. 130-136 ◽  
Author(s):  
M KIRILLOVA ◽  
A KIRILLOV ◽  
P REIS ◽  
J SILVA ◽  
J FRAUSTODASILVA ◽  
...  

Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 36 ◽  
Author(s):  
Hyo-Young Kim ◽  
Jeeyoung Shin ◽  
Il-Chan Jang ◽  
Young-Wan Ju

Supercapacitors are attractive as a major energy storage device due to their high coulombic efficiency and semi-permanent life cycle. Transition metal oxides are used as electrode material in supercapacitors due to their high conductivity, capacitance, and multiple oxidation states. Nanopowder transition metal oxides exhibit low specific surface area, ion diffusion, electrical conductivity, and structural stability compared with the three-dimensional (3D) structure. Furthermore, unstable performance during long-term testing can occur via structural transition. Therefore, it is necessary to synthesize a transition metal oxide with a high specific surface area and a stable structure for supercapacitor application. Transition metal oxides with a perovskite structure control structural transition and improve conductivity. In this study, a NiMnO3 perovskite oxide with a high specific surface area and electrochemical properties was obtained via hydrothermal synthesis at low temperature. Hydrothermal synthesis was used to fabricate materials with an aqueous solution under high temperature and pressure. The shape and composition were regulated by controlling the hydrothermal synthesis reaction temperature and time. The synthesis of NiMnO3 was controlled by the reaction time to alter the specific surface area and morphology. The prepared perovskite NiMnO3 oxide with a three-dimensional structure can be used as an active electrode material for supercapacitors and electrochemical catalysts. The prepared NiMnO3 perovskite oxide showed a high specific capacitance of 99.03 F·g−1 and excellent cycle stability with a coulombic efficiency of 77% even after 7000 cycles.


2003 ◽  
Vol 15 (7) ◽  
pp. 1401-1403 ◽  
Author(s):  
Jeroen Spooren ◽  
Anja Rumplecker ◽  
Franck Millange ◽  
Richard I. Walton

Author(s):  
R. Ai ◽  
H.-J. Fan ◽  
L. D. Marks

It has been known for a long time that electron irradiation induces damage in maximal valence transition metal oxides such as TiO2, V2O5, and WO3, of which transition metal ions have an empty d-shell. This type of damage is excited by electronic transition and can be explained by the Knoteck-Feibelman mechanism (K-F mechanism). Although the K-F mechanism predicts that no damage should occur in transition metal oxides of which the transition metal ions have a partially filled d-shell, namely submaximal valence transition metal oxides, our recent study on ReO3 shows that submaximal valence transition metal oxides undergo damage during electron irradiation.ReO3 has a nearly cubic structure and contains a single unit in its cell: a = 3.73 Å, and α = 89°34'. TEM specimens were prepared by depositing dry powders onto a holey carbon film supported on a copper grid. Specimens were examined in Hitachi H-9000 and UHV H-9000 electron microscopes both operated at 300 keV accelerating voltage. The electron beam flux was maintained at about 10 A/cm2 during the observation.


Author(s):  
Michel Fialin ◽  
Guy Rémond

Oxygen-bearing minerals are generally strong insulators (e.g. silicates), or if not (e.g. transition metal oxides), they are included within a rock matrix which electrically isolates them from the sample holder contacts. In this respect, a thin carbon layer (150 Å in our laboratory) is evaporated on the sections in order to restore the conductivity. For silicates, overestimated oxygen concentrations are usually noted when transition metal oxides are used as standards. These trends corroborate the results of Bastin and Heijligers on MgO, Al2O3 and SiO2. According to our experiments, these errors are independent of the accelerating voltage used (fig.l).Owing to the low density of preexisting defects within the Al2O3 single-crystal, no significant charge buildup occurs under irradiation at low accelerating voltage (< 10keV). As a consequence, neither beam instabilities, due to electrical discharges within the excited volume, nor losses of energy for beam electrons before striking the sample, due to the presence of the electrostatic charge-induced potential, are noted : measurements from both coated and uncoated samples give comparable results which demonstrates that the carbon coating is not the cause of the observed errors.


Sign in / Sign up

Export Citation Format

Share Document