Stress-shielding as a cause of insertional tendinopathy: the operative technique of limited adductor tenotomy supports this theory

2004 ◽  
Vol 7 (4) ◽  
pp. 424-428 ◽  
Author(s):  
JW Orchard ◽  
JL Cook ◽  
N Halpin
1992 ◽  
Vol 19 (2) ◽  
pp. 351-356 ◽  
Author(s):  
Harvey A. Zarem ◽  
Jeffrey I. Resnick

Skull Base ◽  
2011 ◽  
Vol 21 (S 01) ◽  
Author(s):  
Paulo Pires de Aguiar ◽  
Rogério Aires ◽  
Romulo Marques ◽  
Marcos Maldaun ◽  
Antonio Souza Filho ◽  
...  

2020 ◽  
Vol 133 (1) ◽  
pp. 119-128 ◽  
Author(s):  
Bin Tang ◽  
ShenHao Xie ◽  
GuanLin Huang ◽  
ZhiGang Wang ◽  
Le Yang ◽  
...  

OBJECTIVETransinfundibular craniopharyngioma (TC) is one of the 4 subtypes of suprasellar craniopharyngioma. In this study, the authors analyzed the clinical features of and operative technique for TC.METHODSA total of 95 consecutive cases of suprasellar craniopharyngioma that had been resected via the endoscopic expanded endonasal approach were retrospectively reviewed. Patients were divided into 2 groups: 34 in the TC group and 61 in the nontransinfundibular craniopharyngioma (NC) group. Clinical and radiographic features, intraoperative findings, histopathological and genetic findings, and surgical outcomes were analyzed and compared between groups.RESULTSCompared with NC, TC was mostly seen in adult patients (97.1%); it was rare in children (2.9%). Clinical presentations tended toward headache, hydrocephalus, and diabetes insipidus. The relatively smaller volume, midline location (consistent with the stalk position), unidentifiable stalk, no shift of the third ventricle, and greater likelihood to involve the third ventricle and cause hydrocephalus were the characteristic features of TC in the preoperative MRI study. According to the degree of vertical extension of the tumor, the 34 TCs could be classified into 3 subtypes: type 1, entity was limited to stalk (n = 2, 5.9%); type 2, tumor extended up to the third ventricle (type 2a) or down to the subdiaphragmatic cavity (type 2b) (n = 23, 67.6%); and type 3, tumor extended in both directions (n = 9, 26.5%). For TC resection, the chiasm–pituitary corridor, lamina terminalis corridor, and pituitary corridor could be used separately or jointly. Most of the TCs originated from the infundibulum–tuber cinereum, grew within and along the long axis of the infundibulum, and the pituitary stalk was not usually preserved in TCs (20.6%), whereas the rate of preservation was higher (80.3%) in NCs. Bilateral hypothalamic injury was found in nearly all TCs if radical resection was performed, whereas the relationship between NCs and hypothalamus was either compression (32.8%) or unilateral invasion (67.2%). Meanwhile, the postoperative endocrine and neuropsychological function outcomes in patients with TC were worse than in patients with NC. The genetic analysis with whole-exome sequencing studies showed no differential mutations of CTNNB1 (β-catenin) and BRAF (V600E) between TC and NC subtypes, but there was a difference between adamantinomatous craniopharyngioma and papillary craniopharyngioma.CONCLUSIONSTC is a special subtype of suprasellar craniopharyngioma, which is remarkably different from NC. Identification of this type of tumor preoperatively is essential for the planning of appropriate surgical approach and degree of excision.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 307
Author(s):  
Cheng-Tang Pan ◽  
Che-Hsin Lin ◽  
Ya-Kang Huang ◽  
Jason S. C. Jang ◽  
Hsuan-Kai Lin ◽  
...  

Intervertebral fusion surgery for spinal trauma, degeneration, and deformity correction is a major vertebral reconstruction operation. For most cages, the stiffness of the cage is high enough to cause stress concentration, leading to a stress shielding effect between the vertebral bones and the cages. The stress shielding effect affects the outcome after the reconstruction surgery, easily causing damage and leading to a higher risk of reoperation. A porous structure for the spinal fusion cage can effectively reduce the stiffness to obtain more comparative strength for the surrounding tissue. In this study, an intervertebral cage with a porous gradation structure was designed for Ti64ELI alloy powders bonded by the selective laser melting (SLM) process. The medical imaging software InVesalius and 3D surface reconstruction software Geomagic Studio 12 (Raindrop Geomagic Inc., Morrisville, NC, USA) were utilized to establish the vertebra model, and ANSYS Workbench 16 (Ansys Inc, Canonsburg, PA, USA) simulation software was used to simulate the stress and strain of the motions including vertical body-weighted compression, flexion, extension, lateral bending, and rotation. The intervertebral cage with a hollow cylinder had porosity values of 80–70–60–70–80% (from center to both top side and bottom side) and had porosity values of 60–70–80 (from outside to inside). In addition, according to the contact areas between the vertebras and cages, the shape of the cages can be custom-designed. The cages underwent fatigue tests by following ASTM F2077-17. Then, mechanical property simulations of the cages were conducted for a comparison with the commercially available cages from three companies: Zimmer (Zimmer Biomet Holdings, Inc., Warsaw, IN, USA), Ulrich (Germany), and B. Braun (Germany). The results show that the stress and strain distribution of the cages are consistent with the ones of human bone, and show a uniform stress distribution, which can reduce stress concentration.


2021 ◽  
Author(s):  
Bianka Hummel ◽  
Anna Nagel ◽  
Benjamin Süsoy ◽  
Linda Tarantik ◽  
Linda Michlmayr ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 791
Author(s):  
Muzamil Hussain ◽  
Syed Hasan Askari Rizvi ◽  
Naseem Abbas ◽  
Uzair Sajjad ◽  
Muhammad Rizwan Shad ◽  
...  

Titanium, stainless steel, and CoCrMo alloys are the most widely used biomaterials for orthopedic applications. The most common causes of orthopedic implant failure after implantation are infections, inflammatory response, least corrosion resistance, mismatch in elastic modulus, stress shielding, and excessive wear. To address the problems associated with implant materials, different modifications related to design, materials, and surface have been developed. Among the different methods, coating is an effective method to improve the performance of implant materials. In this article, a comprehensive review of recent studies has been carried out to summarize the impact of coating materials on metallic implants. The antibacterial characteristics, biodegradability, biocompatibility, corrosion behavior, and mechanical properties for performance evaluation are briefly summarized. Different effective coating techniques, coating materials, and additives have been summarized. The results are useful to produce the coating with optimized properties.


Sign in / Sign up

Export Citation Format

Share Document