lattice structures
Recently Published Documents


TOTAL DOCUMENTS

1423
(FIVE YEARS 667)

H-INDEX

61
(FIVE YEARS 12)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 605
Author(s):  
Jacobs Somnic ◽  
Bruce W. Jo

Lattice structures have shown great potential in that mechanical properties are customizable without changing the material itself. Lattice materials could be light and highly stiff as well. With this flexibility of designing structures without raw material processing, lattice structures have been widely used in various applications such as smart and functional structures in aerospace and computational mechanics. Conventional methodologies for understanding behaviors of lattice materials take numerical approaches such as FEA (finite element analysis) and high-fidelity computational tools including ANSYS and ABAQUS. However, they demand a high computational load in each geometry run. Among many other methodologies, homogenization is another numerical approach but that enables to model behaviors of bulk lattice materials by analyzing either a small portion of them using numerical regression for rapid processing. In this paper, we provide a comprehensive survey of representative homogenization methodologies and their status and challenges in lattice materials with their fundamentals.


2022 ◽  
Vol 13 (1) ◽  
pp. 8
Author(s):  
Arish Dasan ◽  
Jozef Kraxner ◽  
Luca Grigolato ◽  
Gianpaolo Savio ◽  
Hamada Elsayed ◽  
...  

The present study illustrates the manufacturing method of hierarchically porous 3D scaffolds based on åkermanite as a promising bioceramic for stereolithography. The macroporosity was designed by implementing 3D models corresponding to different lattice structures (cubic, diamond, Kelvin, and Kagome). To obtain micro-scale porosity, flame synthesized glass microbeads with 10 wt% of silicone resins were utilized to fabricate green scaffolds, later converted into targeted bioceramic phase by firing at 1100 °C in air. No chemical reaction between the glass microspheres, crystallizing into åkermanite, and silica deriving from silicone oxidation was observed upon heat treatment. Silica acted as a binder between the adjacent microspheres, enhancing the creation of microporosity, as documented by XRD, and SEM coupled with EDX analysis. The formation of ‘spongy’ struts was confirmed by infiltration with Rhodamine B solution. The compressive strength of the sintered porous scaffolds was up to 0.7 MPa with the porosity of 68–84%.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 378
Author(s):  
Paweł Bogusz ◽  
Arkadiusz Popławski ◽  
Michał Stankiewicz ◽  
Bartłomiej Kowalski

This paper presents the results of the experimental research of 3D structures developed with an SLA additive technique using Durable Resin V2. The aim of this paper is to evaluate and compare the compression curves, deformation process and energy-absorption parameters of the topologies with different characteristics. The structures were subjected to a quasi-static axial compression test. Five different topologies of lattice structures were studied and compared. In the initial stage of the research, the geometric accuracy of the printed structures was analysed through measurement of the diameter of the beam elements at several selected locations. Compression curves and the stress history at the minimum cross-section of each topology were determined. Energy absorption parameters, including absorbed energy (AE) and specific absorbed energy (SAE), were calculated from the compression curves. Based on the analysis of the photographic material, the failure mode was analysed, and the efficiency of the topologies was compared.


Sign in / Sign up

Export Citation Format

Share Document