scholarly journals A comparison of random walks in dependent random environments

2016 ◽  
Vol 48 (1) ◽  
pp. 199-214
Author(s):  
Werner R. W. Scheinhardt ◽  
Dirk P. Kroese

Abstract We provide exact computations for the drift of random walks in dependent random environments, including k-dependent and moving average environments. We show how the drift can be characterized and evaluated using Perron–Frobenius theory. Comparing random walks in various dependent environments, we demonstrate that their drifts can exhibit interesting behavior that depends significantly on the dependency structure of the random environment.

2001 ◽  
Vol 38 (4) ◽  
pp. 1018-1032 ◽  
Author(s):  
T. Komorowski ◽  
G. Krupa

We prove the law of large numbers for random walks in random environments on the d-dimensional integer lattice Zd. The environment is described in terms of a stationary random field of transition probabilities on the lattice, possessing a certain drift property, modeled on the Kalikov condition. In contrast to the previously considered models, we admit possible correlation of transition probabilities at different sites, assuming however that they become independent at finite distances. The possible dependence of sites makes impossible a direct application of the renewal times technique of Sznitman and Zerner.


2014 ◽  
Vol 46 (03) ◽  
pp. 687-703 ◽  
Author(s):  
Elisabeth Bauernschubert

We establish recurrence and transience criteria for critical branching processes in random environments with immigration. These results are then applied to the recurrence and transience of a recurrent random walk in a random environment on ℤ disturbed by cookies inducing a drift to the right of strength 1.


2019 ◽  
Vol 18 (01) ◽  
pp. 1950003 ◽  
Author(s):  
Bruno Rémillard ◽  
Jean Vaillancourt

Parrondo’s paradox is extended to regime switching random walks in random environments. The paradoxical behavior of the resulting random walk is explained by the effect of the random environment. Full characterization of the asymptotic behavior is achieved in terms of the dimensions of some random subspaces occurring in Oseledec’s theorem. The regime switching mechanism gives our models a richer and more complex asymptotic behavior than the simple random walks in random environments appearing in the literature, in terms of transience and recurrence.


2001 ◽  
Vol 38 (04) ◽  
pp. 1018-1032 ◽  
Author(s):  
T. Komorowski ◽  
G. Krupa

We prove the law of large numbers for random walks in random environments on the d-dimensional integer lattice Z d . The environment is described in terms of a stationary random field of transition probabilities on the lattice, possessing a certain drift property, modeled on the Kalikov condition. In contrast to the previously considered models, we admit possible correlation of transition probabilities at different sites, assuming however that they become independent at finite distances. The possible dependence of sites makes impossible a direct application of the renewal times technique of Sznitman and Zerner.


2014 ◽  
Vol 46 (3) ◽  
pp. 687-703
Author(s):  
Elisabeth Bauernschubert

We establish recurrence and transience criteria for critical branching processes in random environments with immigration. These results are then applied to the recurrence and transience of a recurrent random walk in a random environment on ℤ disturbed by cookies inducing a drift to the right of strength 1.


2005 ◽  
Vol 121 (3-4) ◽  
pp. 361-372 ◽  
Author(s):  
C. Boldrighini ◽  
G. Cosimi ◽  
S. Frigio ◽  
A. Pellegrinotti

2009 ◽  
Vol 147 (1-2) ◽  
pp. 43-88 ◽  
Author(s):  
Alexander Fribergh ◽  
Nina Gantert ◽  
Serguei Popov

1981 ◽  
Vol 13 (2) ◽  
pp. 369-387 ◽  
Author(s):  
Richard D. Bourgin ◽  
Robert Cogburn

The general framework of a Markov chain in a random environment is presented and the problem of determining extinction probabilities is discussed. An efficient method for determining absorption probabilities and criteria for certain absorption are presented in the case that the environmental process is a two-state Markov chain. These results are then applied to birth and death, queueing and branching chains in random environments.


Sign in / Sign up

Export Citation Format

Share Document