scholarly journals NONMEASURABLE SETS AND UNIONS WITH RESPECT TO TREE IDEALS

2020 ◽  
Vol 26 (1) ◽  
pp. 1-14
Author(s):  
MARCIN MICHALSKI ◽  
ROBERT RAŁOWSKI ◽  
SZYMON ŻEBERSKI

AbstractIn this paper, we consider a notion of nonmeasurablity with respect to Marczewski and Marczewski-like tree ideals $s_0$ , $m_0$ , $l_0$ , $cl_0$ , $h_0,$ and $ch_0$ . We show that there exists a subset of the Baire space $\omega ^\omega ,$ which is s-, l-, and m-nonmeasurable that forms a dominating m.e.d. family. We investigate a notion of ${\mathbb {T}}$ -Bernstein sets—sets which intersect but do not contain any body of any tree from a given family of trees ${\mathbb {T}}$ . We also obtain a result on ${\mathcal {I}}$ -Luzin sets, namely, we prove that if ${\mathfrak {c}}$ is a regular cardinal, then the algebraic sum (considered on the real line ${\mathbb {R}}$ ) of a generalized Luzin set and a generalized Sierpiński set belongs to $s_0, m_0$ , $l_0,$ and $cl_0$ .

2014 ◽  
Vol 25 (8) ◽  
pp. 1705-1754 ◽  
Author(s):  
LUCA MOTTO ROS ◽  
PHILIPP SCHLICHT ◽  
VICTOR SELIVANOV

The structure of the Wadge degrees on zero-dimensional spaces is very simple (almost well ordered), but for many other natural nonzero-dimensional spaces (including the space of reals) this structure is much more complicated. We consider weaker notions of reducibility, including the so-called Δ0α-reductions, and try to find for various natural topological spaces X the least ordinal αX such that for every αX ⩽ β < ω1 the degree-structure induced on X by the Δ0β-reductions is simple (i.e. similar to the Wadge hierarchy on the Baire space). We show that αX ⩽ ω for every quasi-Polish space X, that αX ⩽ 3 for quasi-Polish spaces of dimension ≠ ∞, and that this last bound is in fact optimal for many (quasi-)Polish spaces, including the real line and its powers.


2016 ◽  
Vol 65 (1) ◽  
pp. 37-48
Author(s):  
Jacek Hejduk ◽  
Renata Wiertelak ◽  
Wojciech Wojdowski

Abstract Some kind of abstract density topology in a topological Baire space is considered. The semiregularization of this type of topology on the real line in many cases is the coarsest topology for which real functions continuous with respect to the abstract density topology are continuous.


2016 ◽  
pp. 3973-3982
Author(s):  
V. R. Lakshmi Gorty

The fractional integrals of Bessel-type Fractional Integrals from left-sided and right-sided integrals of fractional order is established on finite and infinite interval of the real-line, half axis and real axis. The Bessel-type fractional derivatives are also established. The properties of Fractional derivatives and integrals are studied. The fractional derivatives of Bessel-type of fractional order on finite of the real-line are studied by graphical representation. Results are direct output of the computer algebra system coded from MATLAB R2011b.


2000 ◽  
Vol 26 (1) ◽  
pp. 237
Author(s):  
Duszyński
Keyword(s):  

1982 ◽  
Vol 8 (1) ◽  
pp. 67 ◽  
Author(s):  
Thomson
Keyword(s):  

2020 ◽  
Vol 27 (2) ◽  
pp. 265-269
Author(s):  
Alexander Kharazishvili

AbstractIt is shown that any function acting from the real line {\mathbb{R}} into itself can be expressed as a pointwise limit of finite sums of periodic functions. At the same time, the real analytic function {x\rightarrow\exp(x^{2})} cannot be represented as a uniform limit of finite sums of periodic functions and, simultaneously, this function is a locally uniform limit of finite sums of periodic functions. The latter fact needs the techniques of Hamel bases.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1060
Author(s):  
Enrico Celeghini ◽  
Manuel Gadella ◽  
Mariano A. del del Olmo

We introduce a multi-parameter family of bases in the Hilbert space L2(R) that are associated to a set of Hermite functions, which also serve as a basis for L2(R). The Hermite functions are eigenfunctions of the Fourier transform, a property that is, in some sense, shared by these “generalized Hermite functions”. The construction of these new bases is grounded on some symmetry properties of the real line under translations, dilations and reflexions as well as certain properties of the Fourier transform. We show how these generalized Hermite functions are transformed under the unitary representations of a series of groups, including the Weyl–Heisenberg group and some of their extensions.


Sign in / Sign up

Export Citation Format

Share Document