real line
Recently Published Documents


TOTAL DOCUMENTS

1404
(FIVE YEARS 212)

H-INDEX

34
(FIVE YEARS 3)

Nonlinearity ◽  
2022 ◽  
Vol 35 (2) ◽  
pp. 1093-1118
Author(s):  
M Gröger ◽  
J Jaerisch ◽  
M Kesseböhmer

Abstract We develop a new thermodynamic formalism to investigate the transient behaviour of maps on the real line which are skew-periodic Z -extensions of expanding interval maps. Our main focus lies in the dimensional analysis of the recurrent and transient sets as well as in determining the full dimension spectrum with respect to α-escaping sets. Our results provide a one-dimensional model for the phenomenon of a dimension gap occurring for limit sets of Kleinian groups. In particular, we show that a dimension gap occurs if and only if we have non-zero drift and we are able to precisely quantify its width as an application of our new formalism.


2021 ◽  
Vol 13 (3) ◽  
pp. 831-837
Author(s):  
N.V. Parfinovych

Let $S_{h,m}$, $h>0$, $m\in {\mathbb N}$, be the spaces of polynomial splines of order $m$ of deficiency 1 with nodes at the points $kh$, $k\in {\mathbb Z}$. We obtain exact values of the best $(\alpha, \beta)$-approximations by spaces $S_{h,m}\cap L_1({\mathbb R})$ in the space $L_1({\mathbb R})$ for the classes $W^r_{1,1}({\mathbb R})$, $r\in {\mathbb N}$, of functions, defined on the whole real line, integrable on ${\mathbb R}$ and such that their $r$th derivatives belong to the unit ball of $L_1({\mathbb R})$. These results generalize the well-known G.G. Magaril-Ilyaev's and V.M. Tikhomirov's results on the exact values of the best approximations of classes $W^r_{1,1}({\mathbb R})$ by splines from $S_{h,m}\cap L_1({\mathbb R})$ (case $\alpha=\beta=1$), as well as are non-periodic analogs of the V.F. Babenko's result on the best non-symmetric approximations of classes $W^r_1({\mathbb T})$ of $2\pi$-periodic functions with $r$th derivative belonging to the unit ball of $L_1({\mathbb T})$ by periodic polynomial splines of minimal deficiency. As a corollary of the main result, we obtain exact values of the best one-sided approximations of classes $W^r_1$ by polynomial splines from $S_{h,m}({\mathbb T})$. This result is a periodic analogue of the results of A.A. Ligun and V.G. Doronin on the best one-sided approximations of classes $W^r_1$ by spaces $S_{h,m}({\mathbb T})$.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2410
Author(s):  
Janyarak Tongsomporn ◽  
Saeree Wananiyakul ◽  
Jörn Steuding

In this paper, we prove an asymptotic formula for the sum of the values of the periodic zeta-function at the nontrivial zeros of the Riemann zeta-function (up to some height) which are symmetrical on the real line and the critical line. This is an extension of the previous results due to Garunkštis, Kalpokas, and, more recently, Sowa. Whereas Sowa’s approach was assuming the yet unproved Riemann hypothesis, our result holds unconditionally.


Sign in / Sign up

Export Citation Format

Share Document