scholarly journals Rates in almost sure invariance principle for slowly mixing dynamical systems

2019 ◽  
Vol 40 (9) ◽  
pp. 2317-2348 ◽  
Author(s):  
C. CUNY ◽  
J. DEDECKER ◽  
A. KOREPANOV ◽  
F. MERLEVÈDE

We prove the one-dimensional almost sure invariance principle with essentially optimal rates for slowly (polynomially) mixing deterministic dynamical systems, such as Pomeau–Manneville intermittent maps, with Hölder continuous observables. Our rates have form $o(n^{\unicode[STIX]{x1D6FE}}L(n))$, where $L(n)$ is a slowly varying function and $\unicode[STIX]{x1D6FE}$ is determined by the speed of mixing. We strongly improve previous results where the best available rates did not exceed $O(n^{1/4})$. To break the $O(n^{1/4})$ barrier, we represent the dynamics as a Young-tower-like Markov chain and adapt the methods of Berkes–Liu–Wu and Cuny–Dedecker–Merlevède on the Komlós–Major–Tusnády approximation for dependent processes.

2019 ◽  
Vol 20 (01) ◽  
pp. 2050002
Author(s):  
C. Cuny ◽  
J. Dedecker ◽  
A. Korepanov ◽  
F. Merlevède

For a large class of quickly mixing dynamical systems, we prove that the error in the almost sure approximation with a Brownian motion is of order [Formula: see text] with [Formula: see text]. Specifically, we consider nonuniformly expanding maps with exponential and stretched exponential decay of correlations, with one-dimensional Hölder continuous observables.


2003 ◽  
Vol 03 (04) ◽  
pp. L389-L398 ◽  
Author(s):  
ZORAN MIHAILOVIĆ ◽  
MILAN RAJKOVIĆ

A discrete-time Markov chain solution with exact rules for general computation of transition probabilities of the one-dimensional cooperative Parrondo's games is presented. We show that winning and the occurrence of the paradox depends on the number of players. Analytical results are compared to the results of the computer simulation and to the results based on the mean-field approach.


2003 ◽  
Vol 18 (11) ◽  
pp. 787-798 ◽  
Author(s):  
H. L. CARRION ◽  
M. ROJAS ◽  
F. TOPPAN

The classification of the octonionic realizations of the one-dimensional extended supersymmetries is here furnished. These are non-associative realizations which, albeit inequivalent, are put in correspondence with a subclass of the already classified associative representations for 1D extended supersymmetries. Examples of dynamical systems invariant under octonionic realizations of the extended supersymmetries are given. We cite among the others the octonionic spinning particles, the N = 8 KdV , etc. Possible applications to supersymmetric systems arising from dimensional reduction of the octonionic superstring and M-theory are mentioned.


1994 ◽  
Vol 26 (1) ◽  
pp. 80-103 ◽  
Author(s):  
Catherine Bouton ◽  
Gilles Pagès

We show that the one-dimensional self-organizing Kohonen algorithm (with zero or two neighbours and constant step ε) is a Doeblin recurrent Markov chain provided that the stimuli distribution μ is lower bounded by the Lebesgue measure on some open set. Some properties of the invariant probability measure vε (support, absolute continuity, etc.) are established as well as its asymptotic behaviour as ε ↓ 0 and its robustness with respect to μ.


2010 ◽  
Vol 20 (08) ◽  
pp. 2253-2425 ◽  
Author(s):  
LEON O. CHUA ◽  
GIOVANNI E. PAZIENZA

Over the past eight years, we have studied one of the simplest, yet extremely interesting, dynamical systems; namely, the one-dimensional binary Cellular Automata. The most remarkable results have been presented in a series of papers which is concluded by the present article. The final stop of our odyssey is devoted to the analysis of the second half of the 30 Bernoulli στ-shift rules, which constitute the largest among the six groups in which we classified the 256 local rules. For all these 15 rules, we present the basin-tree diagrams obtained by using each bit string with L ≤ 8 as initial state, a summary of the characteristics of their ω-limit orbits, and the space-time patterns generated from the superstring. Also, in the last section we summarize the main results we obtained by means of our "nonlinear dynamics perspective".


2008 ◽  
Vol 18 (12) ◽  
pp. 3625-3632
Author(s):  
JUAN CARLOS SECK TUOH MORA ◽  
MANUEL GONZÁLEZ HERNÁNDEZ ◽  
GENARO JUÁREZ MARTÍNEZ ◽  
SERGIO V. CHAPA VERGARA ◽  
HAROLD V. McINTOSH

Reversible cellular automata are discrete invertible dynamical systems determined by local interactions among their components. For the one-dimensional case, there are classical references providing a complete characterization based on combinatorial properties. Using these results and the simulation of every automaton by another with neighborhood size 2, this paper describes other types of invertible behaviors embedded in these systems different from the classical one observed in the temporal evolution. In particular, spatial reversibility and diagonal surjectivity are studied, and the generation of macrocells in the evolution space is analyzed.


1994 ◽  
Vol 26 (01) ◽  
pp. 80-103 ◽  
Author(s):  
Catherine Bouton ◽  
Gilles Pagès

We show that the one-dimensional self-organizing Kohonen algorithm (with zero or two neighbours and constant step ε) is a Doeblin recurrent Markov chain provided that the stimuli distribution μ is lower bounded by the Lebesgue measure on some open set. Some properties of the invariant probability measure vε (support, absolute continuity, etc.) are established as well as its asymptotic behaviour as ε ↓ 0 and its robustness with respect to μ.


Sign in / Sign up

Export Citation Format

Share Document