dependent processes
Recently Published Documents


TOTAL DOCUMENTS

910
(FIVE YEARS 161)

H-INDEX

68
(FIVE YEARS 8)

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 102
Author(s):  
Varsha Meena ◽  
Shivani Sharma ◽  
Gazaldeep Kaur ◽  
Bhupinder Singh ◽  
Ajay Kumar Pandey

The major facilitator superfamily (MFS) is a large and diverse group of secondary transporters found across all kingdoms of life. Zinc-induced facilitator-like (ZIFL) transporters are the MFS family members that function as exporters driven by the antiporter-dependent processes. The presence of multiple ZIFL transporters was shown in various plant species, as well as in bryophytes. However, only a few ZIFLs have been functionally characterized in plants, and their localization has been suggested to be either on tonoplast or at the plasma membrane. A subset of the plant ZIFLs were eventually characterized as transporters due to their specialized role in phytosiderophores efflux and auxin homeostasis, and they were also proven to impart tolerance to micronutrient deficiency. The emerging functions of ZIFL proteins highlight their role in addressing important traits in crop species. This review aims to provide insight into and discuss the importance of plant ZIFL in various tissue-specific functions. Furthermore, a spotlight is placed on their role in mobilizing essential micronutrients, including iron and zinc, from the rhizosphere to support plant survival. In conclusion, in this paper, we discuss the functional redundancy of ZIFL transporters to understand their roles in developing specific traits in crop.


2021 ◽  
Vol 75 (12) ◽  
pp. 1037-1044
Author(s):  
Chiara Borsari ◽  
Matthias P. Wymann

Phosphoinositide 3-kinase (PI3K) plays a key role in a plethora of physiologic processes and controls cell growth, metabolism, immunity, cardiovascular and neurological function, and more. The discovery of wort-mannin as the first potent PI3K inhibitor (PI3Ki) in the 1990s provided rapid identification of PI3K-dependent processes, which drove the discovery of the PI3K/protein kinase B (PKB/Akt)/target of rapamycin (mTOR) pathway. Genetic mouse models and first PI3K isoform-specific inhibitors pinpointed putative therapeutic applications. The recognition of PI3K as target for cancer therapy drove subsequently drug development. Here we provide a brief journey through the emerging roles of PI3K to the development of preclinical and clinical PI3Ki candidates.


2021 ◽  
Vol 9 ◽  
Author(s):  
Luis Alberiko Gil-Alana

Global mean sea level data are examined in this work by looking at the presence of time trends in the context of long memory or long range dependent processes. By looking at both seasonal signals retained and seasonal signals removed data from 1992 to 2020, the results show that the two series display significant time trend coefficients and high levels of persistence.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1849
Author(s):  
Alamelu Bharadwaj ◽  
Emma Kempster ◽  
David Morton Waisman

Mutualistic symbiosis refers to the symbiotic relationship between individuals of different species in which both individuals benefit from the association. S100A10, a member of the S100 family of Ca2+-binding proteins, exists as a tight dimer and binds two annexin A2 molecules. This association forms the annexin A2/S100A10 complex known as AIIt, and modifies the distinct functions of both proteins. Annexin A2 is a Ca2+-binding protein that binds F-actin, phospholipid, RNA, and specific polysaccharides such as heparin. S100A10 does not bind Ca2+, but binds tPA, plasminogen, certain plasma membrane ion channels, neurotransmitter receptors, and the structural scaffold protein, AHNAK. S100A10 relies on annexin A2 for its intracellular survival: in the absence of annexin A2, it is rapidly destroyed by ubiquitin-dependent and independent proteasomal degradation. Annexin A2 requires S100A10 to increase its affinity for Ca2+, facilitating its participation in Ca2+-dependent processes such as membrane binding. S100A10 binds tissue plasminogen activator and plasminogen, and promotes plasminogen activation to plasmin, which is a process stimulated by annexin A2. In contrast, annexin A2 acts as a plasmin reductase and facilitates the autoproteolytic destruction of plasmin. This review examines the relationship between annexin A2 and S100A10, and how their mutualistic symbiosis affects the function of both proteins.


2021 ◽  
Vol 922 (2) ◽  
pp. 246
Author(s):  
Yang Mei ◽  
Yasong Ge ◽  
Aimin Du ◽  
Xudong Gu ◽  
Danny Summers ◽  
...  

Abstract The variations in radiation belt boundaries reflect competition between acceleration and loss physical processes of energetic electrons, which is an important issue for radiation belts of planets with an internal magnetic field (e.g., Earth, Jupiter, and Saturn). Based on high-quality measurements from Van Allen Probes spanning the years 2014–2018, we develop an empirical model of the energy-dependent boundaries of Earth's electron radiation belt slot region, showing that the lower boundary follows a logarithmic function of the electron energy while the upper boundary is controlled by two competing energy-dependent processes, namely compression and recovery. The compression process relates linearly to a 15 hr averaged Kp index, while the recovery process is found to be approximately proportional to time. Detailed data-model comparisons demonstrate that our model, using only the Kp index and time epoch as inputs, reconstructs the slot region boundaries in real time for 200 keV to 2 MeV electrons under varying geomagnetic conditions. Such a data-driven empirical model is prerequisite to understanding the dynamic changes of the slot region in response to both solar and geomagnetic activities. The model can be readily incorporated into future global simulations of radiation belt electron dynamics in Earth's inner magnetosphere and provide new insights into the study of Saturn's and Jupiter's radiation belt variability.


2021 ◽  
Author(s):  
Maria L. Cayuela ◽  
Elena Martínez-Balsalobre ◽  
Monique Anchelin-Flageul ◽  
Francisca Alcaraz-Perez ◽  
Jesús García-Castillo ◽  
...  

Telomeres are essential for chromosome protection and genomic stability, and telomerase function is critical to organ homeostasis. Zebrafish has become a useful vertebrate model for understanding the cellular and molecular mechanisms of regeneration. The regeneration capacity of the caudal fin of wild-type zebrafish is not affected by repetitive amputation, but the behavior of telomeres during this process has not yet been studied. In this study, the regeneration process was characterized in a telomerase deficient zebrafish model. Moreover, the regenerative capacity after repetitive amputations and at different ages was studied. Regenerative efficiency decreases with aging in all genotypes and surprisingly, telomere length is maintained even in telomerase deficient genotypes. Our results suggest that telomere length can be maintained by the regenerating cells through the recombination-mediated Alternative Lengthening of Telomeres (ALT) pathway, which is likely to support high rates of cell proliferation during the tailfin regeneration process. As far as we know, this is the first animal model to study ALT mechanism in regeneration, which opens a wealth of possibilities to study new treatments of ALT dependent processes.


2021 ◽  
Vol 221 (1) ◽  
Author(s):  
Mirjam Pennauer ◽  
Katarzyna Buczak ◽  
Cristina Prescianotto-Baschong ◽  
Martin Spiess

ADP-ribosylation factors (Arfs) are small GTPases regulating membrane traffic in the secretory pathway. They are closely related and appear to have overlapping functions, regulators, and effectors. The functional specificity of individual Arfs and the extent of redundancy are still largely unknown. We addressed these questions by CRISPR/Cas9-mediated genomic deletion of the human class I (Arf1/3) and class II (Arf4/5) Arfs, either individually or in combination. Most knockout cell lines were viable with slight growth defects only when lacking Arf1 or Arf4. However, Arf1+4 and Arf4+5 could not be deleted simultaneously. Class I Arfs are nonessential, and Arf4 alone is sufficient for viability. Upon Arf1 deletion, the Golgi was enlarged, and recruitment of vesicle coats decreased, confirming a major role of Arf1 in vesicle formation at the Golgi. Knockout of Arf4 caused secretion of ER-resident proteins, indicating specific defects in coatomer-dependent ER protein retrieval by KDEL receptors. The knockout cell lines will be useful tools to study other Arf-dependent processes.


2021 ◽  
pp. 548-567
Author(s):  
James Davidson

This chapter deals with the central limit theorem (CLT) for dependent processes. As with the law of large numbers, the focus is on near‐epoch dependent and mixing processes and array versions of the results are given to allow heterogeneity. The cornerstone of these results is a general CLT due to McLeish, from which a result for martingales is obtained directly. A result for stationary ergodic mixingales is given, and the rest of the chapter is devoted to proving and interpreting a CLT for mixingales and hence for arrays that are near‐epoch dependent on a strong‐mixing and uniform-mixing processes.


2021 ◽  
Vol 9 (10) ◽  
pp. 2151
Author(s):  
Adeline Goulet ◽  
Christian Cambillau

Lactic acid bacteria (LAB) are important microorganisms in food fermentation. In the food industry, bacteriophages (phages or bacterial viruses) may cause the disruption of LAB-dependent processes with product inconsistencies and economic losses. LAB phages use diverse adhesion devices to infect their host, yet the overall picture of host-binding mechanisms remains incomplete. Here, we aimed to determine the structure and topology of the adhesion devices of two lytic siphophages, OE33PA and Vinitor162, infecting the wine bacteria Oenococcus oeni. These phages possess adhesion devices with a distinct composition and morphology and likely use different infection mechanisms. We primarily used AlphaFold2, an algorithm that can predict protein structure with unprecedented accuracy, to obtain a 3D model of the adhesion devices’ components. Using our prior knowledge of the architecture of the LAB phage host-binding machineries, we also reconstituted the topology of OE33PA and Vinitor162 adhesion devices. While OE33PA exhibits original structures in the assembly of its bulky adhesion device, Vinitor162 harbors several carbohydrate-binding modules throughout its long and extended adhesion device. Overall, these results highlight the ability of AlphaFold2 to predict protein structures and illustrate its great potential in the study of phage structures and host-binding mechanisms.


2021 ◽  
Vol 134 (19) ◽  
Author(s):  
Alain Devault ◽  
Simonetta Piatti

ABSTRACT At mitotic exit the cell cycle engine is reset to allow crucial processes, such as cytokinesis and replication origin licensing, to take place before a new cell cycle begins. In budding yeast, the cell cycle clock is reset by a Hippo-like kinase cascade called the mitotic exit network (MEN), whose activation is triggered at spindle pole bodies (SPBs) by the Tem1 GTPase. Yet, MEN activity must be extinguished once MEN-dependent processes have been accomplished. One factor contributing to switching off the MEN is the Amn1 protein, which binds Tem1 and inhibits it through an unknown mechanism. Here, we show that Amn1 downregulates Tem1 through a dual mode of action. On one side, it evicts Tem1 from SPBs and escorts it into the nucleus. On the other, it promotes Tem1 degradation as part of a Skp, Cullin and F-box-containing (SCF) ubiquitin ligase. Tem1 inhibition by Amn1 takes place after cytokinesis in the bud-derived daughter cell, consistent with its asymmetric appearance in the daughter cell versus the mother cell. This dual mechanism of Tem1 inhibition by Amn1 may contribute to the rapid extinguishing of MEN activity once it has fulfilled its functions.


Sign in / Sign up

Export Citation Format

Share Document