Minimally critical regular endomorphisms of

2021 ◽  
pp. 1-30
Author(s):  
PATRICK INGRAM

Abstract We study the dynamics of the map $f:\mathbb {A}^N\to \mathbb {A}^N$ defined by $$ \begin{align*} f(\mathbf{X})=A\mathbf{X}^d+\mathbf{b}, \end{align*} $$ for $A\in \operatorname {SL}_N$ , $\mathbf {b}\in \mathbb {A}^N$ , and $d\geq 2$ , a class which specializes to the unicritical polynomials when $N=1$ . In the case $k=\mathbb {C}$ we obtain lower bounds on the sum of Lyapunov exponents of f, and a statement which generalizes the compactness of the Mandelbrot set. Over $\overline {\mathbb {Q}}$ we obtain estimates on the critical height of f, and over algebraically closed fields we obtain some rigidity results for post-critically finite morphisms of this form.

2004 ◽  
Vol 271 (2) ◽  
pp. 627-637 ◽  
Author(s):  
Zoé Chatzidakis ◽  
Ehud Hrushovski

Author(s):  
D. F. Holt ◽  
N. Spaltenstein

AbstractThe classification of the nilpotent orbits in the Lie algebra of a reductive algebraic group (over an algebraically closed field) is given in all the cases where it was not previously known (E7 and E8 in bad characteristic, F4 in characteristic 3). The paper exploits the tight relation with the corresponding situation over a finite field. A computer is used to study this case for suitable choices of the finite field.


2017 ◽  
Vol 153 (8) ◽  
pp. 1706-1746
Author(s):  
Michael Groechenig

A result of André Weil allows one to describe rank $n$ vector bundles on a smooth complete algebraic curve up to isomorphism via a double quotient of the set $\text{GL}_{n}(\mathbb{A})$ of regular matrices over the ring of adèles (over algebraically closed fields, this result is also known to extend to $G$-torsors for a reductive algebraic group $G$). In the present paper we develop analogous adelic descriptions for vector and principal bundles on arbitrary Noetherian schemes, by proving an adelic descent theorem for perfect complexes. We show that for Beilinson’s co-simplicial ring of adèles $\mathbb{A}_{X}^{\bullet }$, we have an equivalence $\mathsf{Perf}(X)\simeq |\mathsf{Perf}(\mathbb{A}_{X}^{\bullet })|$ between perfect complexes on $X$ and cartesian perfect complexes for $\mathbb{A}_{X}^{\bullet }$. Using the Tannakian formalism for symmetric monoidal $\infty$-categories, we conclude that a Noetherian scheme can be reconstructed from the co-simplicial ring of adèles. We view this statement as a scheme-theoretic analogue of Gelfand–Naimark’s reconstruction theorem for locally compact topological spaces from their ring of continuous functions. Several results for categories of perfect complexes over (a strong form of) flasque sheaves of algebras are established, which might be of independent interest.


1986 ◽  
Vol 30 (2) ◽  
pp. 103-119 ◽  
Author(s):  
C.J. Ash ◽  
John W. Rosenthal

1986 ◽  
pp. 129-140
Author(s):  
Michael D. Fried ◽  
Moshe Jarden

Sign in / Sign up

Export Citation Format

Share Document