scholarly journals All finite sets are Ramsey in the maximum norm

2021 ◽  
Vol 9 ◽  
Author(s):  
Andrey Kupavskii ◽  
Arsenii Sagdeev

Abstract For two metric spaces $\mathbb X$ and $\mathcal Y$ the chromatic number $\chi ({{\mathbb X}};{{\mathcal{Y}}})$ of $\mathbb X$ with forbidden $\mathcal Y$ is the smallest k such that there is a colouring of the points of $\mathbb X$ with k colors that contains no monochromatic copy of $\mathcal Y$ . In this article, we show that for each finite metric space $\mathcal {M}$ that contains at least two points the value $\chi \left ({{\mathbb R}}^n_\infty; \mathcal M \right )$ grows exponentially with n. We also provide explicit lower and upper bounds for some special $\mathcal M$ .

2019 ◽  
Vol 72 (3) ◽  
pp. 774-804 ◽  
Author(s):  
Stephen J. Dilworth ◽  
Denka Kutzarova ◽  
Mikhail I. Ostrovskii

AbstractMain results of the paper are as follows:(1) For any finite metric space $M$ the Lipschitz-free space on $M$ contains a large well-complemented subspace that is close to $\ell _{1}^{n}$.(2) Lipschitz-free spaces on large classes of recursively defined sequences of graphs are not uniformly isomorphic to $\ell _{1}^{n}$ of the corresponding dimensions. These classes contain well-known families of diamond graphs and Laakso graphs.Interesting features of our approach are: (a) We consider averages over groups of cycle-preserving bijections of edge sets of graphs that are not necessarily graph automorphisms. (b) In the case of such recursive families of graphs as Laakso graphs, we use the well-known approach of Grünbaum (1960) and Rudin (1962) for estimating projection constants in the case where invariant projections are not unique.


2012 ◽  
Vol 21 (4) ◽  
pp. 611-622 ◽  
Author(s):  
A. KOSTOCHKA ◽  
M. KUMBHAT ◽  
T. ŁUCZAK

A colouring of the vertices of a hypergraph is called conflict-free if each edge e of contains a vertex whose colour does not repeat in e. The smallest number of colours required for such a colouring is called the conflict-free chromatic number of , and is denoted by χCF(). Pach and Tardos proved that for an (2r − 1)-uniform hypergraph with m edges, χCF() is at most of the order of rm1/r log m, for fixed r and large m. They also raised the question whether a similar upper bound holds for r-uniform hypergraphs. In this paper we show that this is not necessarily the case. Furthermore, we provide lower and upper bounds on the minimum number of edges of an r-uniform simple hypergraph that is not conflict-free k-colourable.


2009 ◽  
Vol 20 (02) ◽  
pp. 313-329
Author(s):  
CHING-LUEH CHANG ◽  
YUH-DAUH LYUU ◽  
YEN-WU TI

Let L ≥ 1, ε > 0 be real numbers, (M, d) be a finite metric space and (N, ρ) be a metric space. A query to a metric space consists of a pair of points and asks for the distance between these points. We study the number of queries to metric spaces (M, d) and (N, ρ) needed to decide whether (M, d) is L-bilipschitz embeddable into (N, ρ) or ∊-far from being L-bilipschitz embeddable into N, ρ). When (M, d) is ∊-far from being L-bilipschitz embeddable into (N, ρ), we allow an o(1) probability of error (i.e., returning the wrong answer "L-bilipschitz embeddable"). However, no error is allowed when (M, d) is L-bilipschitz embeddable into (N, ρ). That is, algorithms with only one-sided errors are studied in this paper. When |M| ≤ |N| are both finite, we give an upper bound of [Formula: see text] on the number of queries for determining with one-sided error whether (M, d) is L-bilipschitz embeddable into (N, ρ) or ∊-far from being L-bilipschitz embeddable into (N, ρ). For the special case of finite |M| = |N|, the above upper bound evaluates to [Formula: see text]. We also prove a lower bound of Ω(|N|3/2) for the special case when |M| = |N| are finite and L = 1, which coincides with testing isometry between finite metric spaces. For finite |M| = |N|, the upper and lower bounds thus match up to a multiplicative factor of at most [Formula: see text], which depends only sublogarithmically in |N|. We also investigate the case when (N, ρ) is not necessarily finite. Our results are based on techniques developed in an earlier work on testing graph isomorphism.


2013 ◽  
Vol 671-674 ◽  
pp. 1557-1560
Author(s):  
Kai Ting Wen

The equilibrium problem includes many fundamental mathematical problems, e.g., optimization problems, saddle point problems, fixed point problems, economics problems, comple- mentarity problems, variational inequality problems, mechanics, engineering, and others as special cases. In this paper, properties of the solution set for generalized equilibrium problems with lower and upper bounds in FC-metric spaces are studied. In noncompact setting, we obtain that the solution set for generalized equilibrium problems with lower and upper bounds is nonempty and compact. Our results improve and generalize some recent results in the reference therein.


2013 ◽  
Vol 56 (3) ◽  
pp. 519-535 ◽  
Author(s):  
TIMOTHY FAVER ◽  
KATELYNN KOCHALSKI ◽  
MATHAV KISHORE MURUGAN ◽  
HEIDI VERHEGGEN ◽  
ELIZABETH WESSON ◽  
...  

AbstractMotivated by a classical theorem of Schoenberg, we prove that an n + 1 point finite metric space has strict 2-negative type if and only if it can be isometrically embedded in the Euclidean space $\mathbb{R}^{n}$ of dimension n but it cannot be isometrically embedded in any Euclidean space $\mathbb{R}^{r}$ of dimension r < n. We use this result as a technical tool to study ‘roundness’ properties of additive metrics with a particular focus on ultrametrics and leaf metrics. The following conditions are shown to be equivalent for a metric space (X,d): (1) X is ultrametric, (2) X has infinite roundness, (3) X has infinite generalized roundness, (4) X has strict p-negative type for all p ≥ 0 and (5) X admits no p-polygonal equality for any p ≥ 0. As all ultrametric spaces have strict 2-negative type by (4) we thus obtain a short new proof of Lemin's theorem: Every finite ultrametric space is isometrically embeddable into some Euclidean space as an affinely independent set. Motivated by a question of Lemin, Shkarin introduced the class $\mathcal{M}$ of all finite metric spaces that may be isometrically embedded into ℓ2 as an affinely independent set. The results of this paper show that Shkarin's class $\mathcal{M}$ consists of all finite metric spaces of strict 2-negative type. We also note that it is possible to construct an additive metric space whose generalized roundness is exactly ℘ for each ℘ ∈ [1, ∞].


2013 ◽  
Vol 65 (1) ◽  
pp. 222-240 ◽  
Author(s):  
N.W. Sauer

Abstract.A metric space M = (M; d) is homogeneous if for every isometry f of a finite subspace of M to a subspace of M there exists an isometry of M onto M extending f . The space M is universal if it isometrically embeds every finite metric space F with dist(F) ⊆ dist(M) (with dist(M) being the set of distances between points in M).A metric space U is a Urysohn metric space if it is homogeneous, universal, separable, and complete. (We deduce as a corollary that a Urysohn metric space U isometrically embeds every separable metric space M with dist(M) ⊆ dist(U).)The main results are: (1) A characterization of the sets dist(U) for Urysohn metric spaces U. (2) If R is the distance set of a Urysohn metric space and M and N are two metric spaces, of any cardinality with distances in R, then they amalgamate disjointly to a metric space with distances in R. (3) The completion of every homogeneous, universal, separable metric space M is homogeneous.


2009 ◽  
Vol 80 (3) ◽  
pp. 486-497 ◽  
Author(s):  
ANTHONY WESTON

AbstractDetermining meaningful lower bounds on the supremal strict p-negative type of classes of finite metric spaces is a difficult nonlinear problem. In this paper we use an elementary approach to obtain the following result: given a finite metric space (X,d) there is a constant ζ>0, dependent only on n=∣X∣ and the scaled diameter 𝔇=(diamX)/min{d(x,y)∣x⁄=y} of X (which we may assume is >1), such that (X,d) has p-negative type for all p∈[0,ζ] and strict p-negative type for all p∈[0,ζ). In fact, we obtain A consideration of basic examples shows that our value of ζ is optimal provided that 𝔇≤2. In other words, for each 𝔇∈(1,2] and natural number n≥3, there exists an n-point metric space of scaled diameter 𝔇 whose supremal strict p-negative type is exactly ζ. The results of this paper hold more generally for all finite semi-metric spaces since the triangle inequality is not used in any of the proofs. Moreover, ζ is always optimal in the case of finite semi-metric spaces.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1202
Author(s):  
Kinkar Chandra Das ◽  
Yilun Shang

Let G be a graph with set of vertices V(G)(|V(G)|=n) and edge set E(G). Very recently, a new degree-based molecular structure descriptor, called Sombor index is denoted by SO(G) and is defined as SO=SO(G)=∑vivj∈E(G)dG(vi)2+dG(vj)2, where dG(vi) is the degree of the vertex vi in G. In this paper we present some lower and upper bounds on the Sombor index of graph G in terms of graph parameters (clique number, chromatic number, number of pendant vertices, etc.) and characterize the extremal graphs.


2018 ◽  
Vol 61 (1) ◽  
pp. 33-47 ◽  
Author(s):  
S. OSTROVSKA ◽  
M. I. OSTROVSKII

AbstractGiven a Banach spaceXand a real number α ≥ 1, we write: (1)D(X) ≤ α if, for any locally finite metric spaceA, all finite subsets of which admit bilipschitz embeddings intoXwith distortions ≤C, the spaceAitself admits a bilipschitz embedding intoXwith distortion ≤ α ⋅C; (2)D(X) = α+if, for every ϵ > 0, the conditionD(X) ≤ α + ϵ holds, whileD(X) ≤ α does not; (3)D(X) ≤ α+ifD(X) = α+orD(X) ≤ α. It is known thatD(X) is bounded by a universal constant, but the available estimates for this constant are rather large. The following results have been proved in this work: (1)D((⊕n=1∞Xn)p) ≤ 1+for every nested family of finite-dimensional Banach spaces {Xn}n=1∞and every 1 ≤p≤ ∞. (2)D((⊕n=1∞ℓ∞n)p) = 1+for 1 <p< ∞. (3)D(X) ≤ 4+for every Banach spaceXwith no nontrivial cotype. Statement (3) is a strengthening of the Baudier–Lancien result (2008).


2015 ◽  
Vol 25 (03) ◽  
pp. 207-225 ◽  
Author(s):  
Simon Willerton

Motivated by Leinster-Cobbold measures of biodiversity, the notion of the spread of a finite metric space is introduced. This is related to Leinster’s magnitude of a metric space. Spread is generalized to infinite metric spaces equipped with a measure and is calculated for spheres and straight lines. For Riemannian manifolds the spread is related to the volume and total scalar curvature. A notion of scale-dependent dimension is introduced and seen for approximations to certain fractals to be numerically close to the Minkowski dimension of the original fractals.


Sign in / Sign up

Export Citation Format

Share Document