scholarly journals Higher spectral flow and an entire bivariant JLO cocycle

Author(s):  
Moulay-Tahar Benameur ◽  
Alan L. Carey

AbstractFor a single Dirac operator on a closed manifold the cocycle introduced by Jaffe-Lesniewski-Osterwalder [19] (abbreviated here to JLO), is a representative of Connes' Chern character map from the K-theory of the algebra of smooth functions on the manifold to its entire cyclic cohomology. Given a smooth fibration of closed manifolds and a family of generalized Dirac operators along the fibers, we define in this paper an associated bivariant JLO cocycle. We then prove that, for any l ≥ 0, our bivariant JLO cocycle is entire when we endow smoooth functions on the total manifold with the Cl+1 topology and functions on the base manifold with the Cl topology. As a by-product of our theorem, we deduce that the bivariant JLO cocycle is entire for the Fréchet smooth topologies. We then prove that our JLO bivariant cocycle computes the Chern character of the Dai-Zhang higher spectral flow.

2016 ◽  
Vol 27 (08) ◽  
pp. 1650068
Author(s):  
Jianqing Yu

We consider a one parameter family [Formula: see text] of families of fiberwise twisted Dirac type operators on a fibration with the typical fiber an even dimensional compact manifold with boundary, which verifies [Formula: see text] with [Formula: see text] being a smooth map from the fibration to a unitary group [Formula: see text]. For each [Formula: see text], we impose on [Formula: see text] a certain fixed local elliptic boundary condition [Formula: see text] and get a self-adjoint extension [Formula: see text]. Under the assumption that [Formula: see text] has vanishing [Formula: see text]-index bundle, we establish a formula for the higher spectral flow of [Formula: see text], [Formula: see text]. Our result generalizes a recent result of [A. Gorokhovsky and M. Lesch, On the spectral flow for Dirac operators with local boundary conditions, Int. Math. Res. Not. IMRN (2015) 8036–8051.] to the families case.


Author(s):  
Arezo Tarviji ◽  
Morteza Mirmohammad Rezaei

We compare the Dirac operator on transitive Riemannian Lie algebroid equipped by spin or complex spin structure with the one defined on to its base manifold‎. Consequently we derive upper eigenvalue bounds of Dirac operator on base manifold of spin Lie algebroid twisted with the spinor bundle of kernel bundle‎.


1987 ◽  
Vol 39 (5) ◽  
pp. 1210-1222
Author(s):  
Toshikazu Natsume

An action α of a discrete group Γ on the circle S1 as orientation preserving C∞-diffeomorphisms gives rise to a foliation on the homotopy quotient S1Γ, and its Godbillon-Vey invariant is, by definition, a cohomology class of S1Γ([1]). This cohomology class naturally defines an additive map from the geometric K-group K0(S1, Γ) into C, through the Chern character from K0(S1, Γ) to H*(S1, Γ Q).Using cyclic cohomology, Connes constructed in [2] an additive map, GV(α), which we shall call the Godbillon-Vey map, from the K0-group of the reduced crossed product C*-algebra C(S1) ⋊ αΓ into C. He showed that GV(α) agrees with the geometric Godbillon-Vey invariant through the index map μ from K0(S1, Γ) to K0(C(S1) ⋊ αΓ).


Author(s):  
Piero D’Ancona ◽  
Luca Fanelli ◽  
Nico Michele Schiavone

AbstractWe prove that the eigenvalues of the n-dimensional massive Dirac operator $${\mathscr {D}}_0 + V$$ D 0 + V , $$n\ge 2$$ n ≥ 2 , perturbed by a potential V, possibly non-Hermitian, are contained in the union of two disjoint disks of the complex plane, provided V is sufficiently small with respect to the mixed norms $$L^1_{x_j} L^\infty _{{\widehat{x}}_j}$$ L x j 1 L x ^ j ∞ , for $$j\in \{1,\dots ,n\}$$ j ∈ { 1 , ⋯ , n } . In the massless case, we prove instead that the discrete spectrum is empty under the same smallness assumption on V, and in particular the spectrum coincides with the spectrum of the unperturbed operator: $$\sigma ({\mathscr {D}}_0+V)=\sigma ({\mathscr {D}}_0)={\mathbb {R}}$$ σ ( D 0 + V ) = σ ( D 0 ) = R . The main tools used are an abstract version of the Birman–Schwinger principle, which allows in particular to control embedded eigenvalues, and suitable resolvent estimates for the Schrödinger operator.


2006 ◽  
Vol 207 (2) ◽  
pp. 455-483 ◽  
Author(s):  
Jean-Louis Tu ◽  
Ping Xu
Keyword(s):  

2002 ◽  
Vol 13 (05) ◽  
pp. 533-548 ◽  
Author(s):  
NICOLAS GINOUX ◽  
BERTRAND MOREL

We give lower bounds for the eigenvalues of the submanifold Dirac operator in terms of intrinsic and extrinsic curvature expressions. We also show that the limiting cases give rise to a class of spinor fields generalizing that of Killing spinors. We conclude by translating these results in terms of intrinsic twisted Dirac operators.


K-Theory ◽  
1992 ◽  
Vol 6 (1) ◽  
pp. 57-86 ◽  
Author(s):  
Ulrike Tillmann

2003 ◽  
Vol 236 (1) ◽  
pp. 161-186 ◽  
Author(s):  
Varghese Mathai ◽  
Danny Stevenson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document