complex spin
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 22)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Bin Yan ◽  
Nikolai Sinitsyn

Abstract We point to the existence of an analytical solution to a general quantum annealing (QA) problem of finding low energy states of an arbitrary Ising spin Hamiltonian HI by implementing time evolution with a Hamiltonian H(t) = HI + g(t)Ht. We will assume that the nonadiabatic annealing protocol is defined by a specific decaying coupling g(t) and a specific mixing Hamiltonian Ht that make the model analytically solvable arbitrarily far from the adiabatic regime. In specific cases of HI, the solution shows the possibility of a considerable quantum speedup of finding the Ising ground state. We then compare predictions of our solution to results of numerical simulations, and argue that the solvable QA protocol produces the optimal performance in the limit of maximal complexity of the computational problem. Our solution demonstrates for the most complex spin glasses a power-law energy relaxation with the annealing time T and uncorrelated from HI annealing schedule. This proves the possibility for spin glasses of a faster than ∼ 1/logβT energy relaxation.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Wei Fan ◽  
Angelos Fotopoulos ◽  
Stephan Stieberger ◽  
Tomasz R. Taylor ◽  
Bin Zhu

Abstract In a recent paper, here referred to as part I, we considered the celestial four-gluon amplitude with one gluon represented by the shadow transform of the corresponding primary field operator. This correlator is ill-defined because it contains branch points related to the presence of conformal blocks with complex spin. In this work, we adopt a procedure similar to minimal models and construct a single-valued completion of the shadow correlator, in the limit when the shadow is “soft.” By following the approach of Dotsenko and Fateev, we obtain an integral representation of such a single-valued correlator. This allows inverting the shadow transform and constructing a single-valued celestial four-gluon amplitude. This amplitude is drastically different from the original Mellin amplitude. It is defined over the entire complex plane and has correct crossing symmetry, OPE and bootstrap properties. It agrees with all known OPEs of celestial gluon operators. The conformal block spectrum consists of primary fields with dimensions ∆ = m + iλ, with integer m ≥ 1 and various, but always integer spin, in all group representations contained in the product of two adjoint representations.


2021 ◽  
Vol 118 (40) ◽  
pp. e2023337118
Author(s):  
Kai Du ◽  
Fei-Ting Huang ◽  
Jaewook Kim ◽  
Seong Joon Lim ◽  
Kasun Gamage ◽  
...  

Chiral magnets have recently emerged as hosts for topological spin textures and related transport phenomena, which can find use in next-generation spintronic devices. The coupling between structural chirality and noncollinear magnetism is crucial for the stabilization of complex spin structures such as magnetic skyrmions. Most studies have been focused on the physical properties in homochiral states favored by crystal growth and the absence of long-ranged interactions between domains of opposite chirality. Therefore, effects of the high density of chiral domains and domain boundaries on magnetic states have been rarely explored so far. Herein, we report layered heterochiral Cr1/3TaS2, exhibiting numerous chiral domains forming topological defects and a nanometer-scale helimagnetic order interlocked with the structural chirality. Tuning the chiral domain density, we discovered a macroscopic topological magnetic texture inside each chiral domain that has an appearance of a spiral magnetic superstructure composed of quasiperiodic Néel domain walls. The spirality of this object can have either sign and is decoupled from the structural chirality. In weak, in-plane magnetic fields, it transforms into a nonspiral array of concentric ring domains. Numerical simulations suggest that this magnetic superstructure is stabilized by strains in the heterochiral state favoring noncollinear spins. Our results unveil topological structure/spin couplings in a wide range of different length scales and highly tunable spin textures in heterochiral magnets.


2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Yuan Miao ◽  
Jules Lamers ◽  
Vincent Pasquier

The spin-\frac{1}{2}12 Heisenberg XXZ chain is a paradigmatic quantum integrable model. Although it can be solved exactly via Bethe ansatz techniques, there are still open issues regarding the spectrum at root of unity values of the anisotropy. We construct Baxter’s Q operator at arbitrary anisotropy from a two-parameter transfer matrix associated to a complex-spin auxiliary space. A decomposition of this transfer matrix provides a simple proof of the transfer matrix fusion and Wronskian relations. At root of unity a truncation allows us to construct the Q operator explicitly in terms of finite-dimensional matrices. From its decomposition we derive truncated fusion and Wronskian relations as well as an interpolation-type formula that has been conjectured previously. We elucidate the Fabricius–McCoy (FM) strings and exponential degeneracies in the spectrum of the six-vertex transfer matrix at root of unity. Using a semicyclic auxiliary representation we give a conjecture for creation and annihilation operators of FM strings for all roots of unity. We connect our findings with the `string-charge duality’ in the thermodynamic limit, leading to a conjecture for the imaginary part of the FM string centres with potential applications to out-of-equilibrium physics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ádám Papp ◽  
Martina Kiechle ◽  
Simon Mendisch ◽  
Valentin Ahrens ◽  
Levent Sahin ◽  
...  

AbstractWe experimentally demonstrate the operation of a Rowland-type concave grating for spin waves, with potential application as a microwave spectrometer. In this device geometry, spin waves are coherently excited on a diffraction grating and form an interference pattern that focuses spin waves to a point corresponding to their frequency. The diffraction grating was created by focused-ion-beam irradiation, which was found to locally eliminate the ferrimagnetic properties of YIG, without removing the material. We found that in our experiments spin waves were created by an indirect excitation mechanism, by exploiting nonlinear resonance between the grating and the coplanar waveguide. Although our demonstration does not include separation of multiple frequency components, since this is not possible if the nonlinear excitation mechanism is used, we believe that using linear excitation the same device geometry could be used as a spectrometer. Our work paves the way for complex spin-wave optic devices—chips that replicate the functionality of integrated optical devices on a chip-scale.


Author(s):  
Heui Beom Lee ◽  
Angela A Shiau ◽  
David Marchiori ◽  
Paul H Oyala ◽  
BYUNG-KUK Yoo ◽  
...  

2021 ◽  
Author(s):  
Heui Beom Lee ◽  
Angela A Shiau ◽  
David Marchiori ◽  
Paul H Oyala ◽  
BYUNG-KUK Yoo ◽  
...  

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Wei Fan ◽  
Angelos Fotopoulos ◽  
Stephan Stieberger ◽  
Tomasz R. Taylor ◽  
Bin Zhu

Abstract In celestial conformal field theory, gluons are represented by primary fields with dimensions ∆ = 1 + iλ, λ ∈ ℝ and spin J = ±1, in the adjoint representation of the gauge group. All two- and three-point correlation functions of these fields are zero as a consequence of four-dimensional kinematic constraints. Four-point correlation functions contain delta-function singularities enforcing planarity of four-particle scattering events. We relax these constraints by taking a shadow transform of one field and perform conformal block decomposition of the corresponding correlators. We compute the conformal block coefficients. When decomposed in channels that are “compatible” in two and four dimensions, such four-point correlators contain conformal blocks of primary fields with dimensions ∆ = 2 + M + iλ, where M ≥ 0 is an integer, with integer spin J = −M, −M + 2, …, M − 2, M. They appear in all gauge group representations obtained from a tensor product of two adjoint representations. When decomposed in incompatible channels, they also contain primary fields with continuous complex spin, but with positive integer dimensions.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
G. Gatti ◽  
D. Gosálbez-Martínez ◽  
S. Roth ◽  
M. Fanciulli ◽  
M. Zacchigna ◽  
...  

AbstractIn non-magnetic materials the combination of inversion symmetry breaking (ISB) and spin-orbit coupling (SOC) determines the spin polarization of the band structure. However, a local spin polarization can also arise in centrosymmetric crystals containing ISB subunits. This is namely the case for the nodal-line semimetal ZrSiTe where, by combining spin- and angle-resolved photoelectron spectroscopy with ab initio band structure calculations, we reveal a complex spin polarization. In the bulk, the valence and conduction bands exhibit opposite spin orientations in two spatially separated two-dimensional ZrTe sectors within the unit cell, yielding no net polarization. We also observe spin-polarized surface states that are well separated in energy and momentum from the bulk bands. A layer-by-layer analysis of the spin polarization allows us to unveil the complex evolution of the signal in the bulk states near the surface, thus bringing the intertwined nature of surface and bulk effects to the fore.


Sign in / Sign up

Export Citation Format

Share Document