Experimental study of the initial stages of wind waves' spatial evolution

2011 ◽  
Vol 681 ◽  
pp. 462-498 ◽  
Author(s):  
DAN LIBERZON ◽  
LEV SHEMER

Despite a significant progress and numerous publications over the last few decades a comprehensive understanding of the process of waves' excitation by wind still has not been achieved. The main goal of the present work was to provide as comprehensive as possible set of experimental data that can be quantitatively compared with theoretical models. Measurements at various air flow rates and at numerous fetches were carried out in a small scale, closed-loop, 5 m long wind wave flume. Mean airflow velocity and fluctuations of the static pressure were measured at 38 vertical locations above the mean water surface simultaneously with determination of instantaneous water surface elevations by wave gauges. Instantaneous fluctuations of two velocity components were recorded for all vertical locations at a single fetch. The water surface drift velocity was determined by the particle tracking velocimetry (PTV) method. Evaluation of spatial growth rates of waves at various frequencies was performed using wave gauge records at various fetches. Phase relations between various signals were established by cross-spectral analysis. Waves' celerities and pressure fluctuation phase lags relative to the surface elevation were determined. Pressure values at the water surface were determined by extrapolating the measured vertical profile of pressure fluctuations to the mean water level and used to calculate the form drag and consequently the energy transfer rates from wind to waves. Directly obtained spatial growth rates were compared with those obtained from energy transfer calculations, as well as with previously available data.

2000 ◽  
Vol 7 (1/2) ◽  
pp. 37-48 ◽  
Author(s):  
M. Joelson ◽  
Th. Dudok de Wit ◽  
Ph. Dussouillez ◽  
A. Ramamonjiarisoa

Abstract. The dynamic evolution of laboratory water surface waves has been studied within the framework of dynamical systems with the aim to identify stochastic or deterministic nonlinear features. Three different regimes are considered: pure wind waves, pure mechanical waves and mixed (wind and mechanical) waves. These three regimes show different dynamics. The results on wind waves do not clearly support the recently proposed idea that a deterministic Stokes-like component dominate the evolution of such waves; they are more appropriately described by a similarity-like approach that includes a random character. Cubic resonant interactions are clearly identified in pure mechanical waves using tricoherence functions. However, detailed aspects of the interactions do not fully agree with existing theoretical models. Finally, a deterministic motion is observed in mixed waves, which therefore are best described by a low dimensional nonlinear deterministic process.


1966 ◽  
Vol 26 (4) ◽  
pp. 651-687 ◽  
Author(s):  
G. M. Hidy ◽  
E. J. Plate

The development of waves and currents resulting from the action of a steady wind on initially standing water has been investigated in a wind–water tunnel. The mean air flow near the water surface, the properties of wind waves, and the drift currents were measured as they evolved with increasing fetch, depth and mean wind speed. The results suggest how the stress on the water surface changes with an increasingly wavy surface, and, from a different viewpoint, how the drift current and the waves develop in relation to the friction velocity of the air. The amplitude spectra calculated for the wavy surface reflected certain features characteristic of an equilibrium configuration, especially in the higher frequencies. The observed equilibrium range in the high frequencies of the spectra fits the f−5 rule satisfactorily up to frequencies f of about 15 c/s. The wave spectra also revealed how the waves grow in the channel, both with time at a fixed point, and with distance from the leading edge of the water. These results are discussed in the light of recent theories for wave generation resulting from the action of pressure fluctuations in the air, and from shearing flow instabilities near the wavy surface. The experimental observations agree reasonably well with the predictions of the recent theory proposed by Miles, using growth rates calculated for the mechanism suggesting energy transfer to the water through the viscous layer in the air near the water surface.


2007 ◽  
Vol 37 (1) ◽  
pp. 106-114 ◽  
Author(s):  
M. Stiassnie ◽  
Y. Agnon ◽  
P. A. E. M. Janssen

Abstract A solution of Rayleigh’s instability equation, which circumvents the apparent critical-layer singularity, is provided. The temporal and spatial growth rates of water waves exposed to a logarithmic wind profile are calculated and discussed. The findings are similar to previously published results, except for shear velocity–to–wave celerity ratios larger than 2, where the newly calculated growth rates start to decrease after having reached a distinct maximum. The ratio of the spatial to temporal growth rates is examined. It is shown to deviate by up to 20% from the leading-order value of 2. The implications of the growth rate to the modal distributions of energy input from wind to waves, for young and mature seas, and in temporal/spatial growth scenarios, are analyzed.


Author(s):  
Erwan O. Rolland ◽  
Francesca De Domenico ◽  
Simone Hochgreb

Flow disturbances are generated inside a duct via pulsed injection of helium into a flow of air. This leads to the generation of an acoustic pulse (direct noise), as well as the production of entropic and compositional inhomogeneities, which are convected with the mean flow. As these inhomogeneities are convected through a choked nozzle, they generate indirect noise. The resulting acoustic pressure fluctuations are measured experimentally using pressure transducers upstream of the nozzle. Insight obtained from theoretical models and a time-delay analysis can be used to isolate and extract the contributions of direct and indirect noise in the experimental signal. These results are directly compared to existing one-dimensional (1D) direct and indirect noise models. The experimental measurement of indirect noise is found to be in good agreement with the theoretical models for entropy noise and compositional noise for a compact 1D isentropic nozzle.


1977 ◽  
Vol 79 (3) ◽  
pp. 463-480 ◽  
Author(s):  
Jin Wu

The slope and curvature distributions of wind waves along two principal axes (upwind-downwind and cross-wind) have been measured in a laboratory tank under various wind velocities. In both directions, the slope distributions are very closely Gaussian, and the components of the mean-square water-surface slope vary loga,rithmically with the friction velocity of the wind. As the windvelocityincreases, the ratio of the upwind-downwind and cross-wind components increases and lies between 0.5 and 0.6 at high wind velocities in the gravity-governed regime of wind-wave interaction. The radius of .water-surface curvature, along either direction of measurement, is generally found to be greater at a steeper viewing angle from the normal to the mean water surface. The average radius of curvature of the disturbed surface varies inversely with the friction velocity of the wind. The ratio of the upwind-downwind and cross-wind components of the average radius of curvature is unity at all wind velocities, indicating that the wind-disturbed water surface is isotropic on the smallest scale. Other results show that both the slope and the curvature distributions are asymmetric along the upwind-downwind direction, either because of the presence of parasitic capillaries or because of the occurrence of wave breaking. The results also indicate that even the high frequency portion of the spectrum is saturated locally but the spectrum is not universal, and that the long waves suppress the growth of the nearly saturated ripples.


2020 ◽  
Author(s):  
Georgy Baydakov ◽  
Ermakova Olga ◽  
Vdovin Maxim ◽  
Sergeev Daniil ◽  
Troitskaya Yuliya

<p>This paper models the impact of the presence of foam on the short-wave component of surface waves and momentum exchange in the atmospheric boundary layer at high winds. First, physical experiments were carried out in a wind-wave flume in which foam can be artificially produced at the water surface. Tests were conducted under high wind-speed conditions where equivalent 10-m wind speed, U10, ranged 12–38 m/s, with measurements made of the airflow parameters, the frequency-wavenumber spectra of the surface waves, the foam coverage of the water surface, and the distribution of the foam bubbles.</p><p>Microwave measurements were performed using a coherent Doppler X-band scatterometer with a wavelength of 3.2 cm and a sequential reception of linearly polarized radiation. It was shown that the presence of foam reduces the NRCS of the agitated water surface. Foam formations are concentrated mainly on the ridges and front slopes of wind waves, which make the main contribution to the scattering of radio waves. This may explain the effect of reducing the total NRCS: foam, which has less reflective properties, masks the main diffusers on the water surface. The second mechanism is associated with the effect of foam on short waves, by analogy with surfactant films.</p><p>The effect of foam on the shape of the Doppler spectrum of a microwave signal scattered by the water surface was investigated. In the case of weak wind, the presence of foam on the surface leads to a decrease in the short-wave part of the spectrum of surface waves and, as a result, to a decrease in the scattered signal. In addition, a mirror component appears in the Doppler spectrum corresponding to the fundamental frequency of the wave. In the case of a stronger wind, the grouping of additional scatterers (foam) on the crests of the waves leads to a shift of the Doppler spectra to the high-frequency region.</p><p>The work was supported by the RFBR (grants 18-35-20068, 19-05-00366, 19-05-00249) and the RF President’s Grant for Young Scientists (MK-144.2019.5).</p>


2020 ◽  
Vol 84 ◽  
pp. 127-140
Author(s):  
BM Gaas ◽  
JW Ammerman

Leucine aminopeptidase (LAP) is one of the enzymes involved in the hydrolysis of peptides, and is sometimes used to indicate potential nitrogen limitation in microbes. Small-scale variability has the potential to confound interpretation of underlying patterns in LAP activity in time or space. An automated flow-injection analysis instrument was used to address the small-scale variability of LAP activity within contiguous regions of the Hudson River plume (New Jersey, USA). LAP activity had a coefficient of variation (CV) of ca. 0.5 with occasional values above 1.0. The mean CVs for other biological parameters—chlorophyll fluorescence and nitrate concentration—were similar, and were much lower for salinity. LAP activity changed by an average of 35 nmol l-1 h-1 at different salinities, and variations in LAP activity were higher crossing region boundaries than within a region. Differences in LAP activity were ±100 nmol l-1 h-1 between sequential samples spaced <10 m apart. Variogram analysis indicated an inherent spatial variability of 52 nmol l-1 h-1 throughout the study area. Large changes in LAP activity were often associated with small changes in salinity and chlorophyll fluorescence, and were sensitive to the sampling frequency. This study concludes that LAP measurements in a sample could realistically be expected to range from zero to twice the average, and changes between areas or times should be at least 2-fold to have some degree of confidence that apparent patterns (or lack thereof) in activity are real.


2021 ◽  
Vol 9 (6) ◽  
pp. 585
Author(s):  
Minghao Wu ◽  
Leen De Vos ◽  
Carlos Emilio Arboleda Chavez ◽  
Vasiliki Stratigaki ◽  
Maximilian Streicher ◽  
...  

The present work introduces an analysis of the measurement and model effects that exist in monopile scour protection experiments with repeated small scale tests. The damage erosion is calculated using the three dimensional global damage number S3D and subarea damage number S3D,i. Results show that the standard deviation of the global damage number σ(S3D)=0.257 and is approximately 20% of the mean S3D, and the standard deviation of the subarea damage number σ(S3D,i)=0.42 which can be up to 33% of the mean S3D. The irreproducible maximum wave height, chaotic flow field and non-repeatable armour layer construction are regarded as the main reasons for the occurrence of strong model effects. The measurement effects are limited to σ(S3D)=0.039 and σ(S3D,i)=0.083, which are minor compared to the model effects.


2021 ◽  
Vol 13 (12) ◽  
pp. 2293
Author(s):  
Marina Amadori ◽  
Virginia Zamparelli ◽  
Giacomo De Carolis ◽  
Gianfranco Fornaro ◽  
Marco Toffolon ◽  
...  

The SAR Doppler frequencies are directly related to the motion of the scatterers in the illuminated area and have already been used in marine applications to monitor moving water surfaces. Here we investigate the possibility of retrieving surface water velocity from SAR Doppler analysis in medium-size lakes. ENVISAT images of the test site (Lake Garda) are processed and the Doppler Centroid Anomaly technique is adopted. The resulting surface velocity maps are compared with the outputs of a hydrodynamic model specifically validated for the case study. Thermal images from MODIS Terra are used in support of the modeling results. The surface velocity retrieved from SAR is found to overestimate the numerical results and the existence of a bias is investigated. In marine applications, such bias is traditionally removed through Geophysical Model Functions (GMFs) by ascribing it to a fully developed wind waves spectrum. We found that such an assumption is not supported in our case study, due to the small-scale variations of topography and wind. The role of wind intensity and duration on the results from SAR is evaluated, and the inclusion of lake bathymetry and the SAR backscatter gradient is recommended for the future development of GMFs suitable for lake environments.


Sign in / Sign up

Export Citation Format

Share Document