scholarly journals Recurrent flows: the clockwork behind turbulence

2013 ◽  
Vol 726 ◽  
pp. 1-4 ◽  
Author(s):  
Predrag Cvitanović

AbstractThe understanding of chaotic dynamics in high-dimensional systems that has emerged in the last decade offers a promising dynamical framework to study turbulence. Here turbulence is viewed as a walk through a forest of exact solutions in the infinite-dimensional state space of the governing equations. Recently, Chandler & Kerswell (J. Fluid Mech., vol. 722, 2013, pp. 554–595) carry out the most exhaustive study of this programme undertaken so far in fluid dynamics, a feat that requires every tool in the dynamicist’s toolbox: numerical searches for recurrent flows, computation of their stability, their symmetry classification, and estimating from these solutions statistical averages over the turbulent flow. In the long run this research promises to develop a quantitative, predictive description of moderate-Reynolds-number turbulence, and to use this description to control flows and explain their statistics.

2019 ◽  
Vol 867 ◽  
pp. 723-764 ◽  
Author(s):  
T. P. Miyanawala ◽  
R. K. Jaiman

We present a dynamic decomposition analysis of the wake flow in fluid–structure interaction (FSI) systems under both laminar and turbulent flow conditions. Of particular interest is to provide the significance of low-dimensional wake flow features and their interaction dynamics to sustain the free vibration of a square cylinder at a relatively low mass ratio. To obtain the high-dimensional data, we employ a body-conforming variational FSI solver based on the recently developed partitioned iterative scheme and the dynamic subgrid-scale turbulence model for a moderate Reynolds number ($Re$). The snapshot data from high-dimensional FSI simulations are projected to a low-dimensional subspace using the proper orthogonal decomposition (POD). We utilize each corresponding POD mode to detect features of the organized motions, namely, the vortex street, the shear layer and the near-wake bubble. We find that the vortex shedding modes contribute solely to the lift force, while the near-wake and shear layer modes play a dominant role in the drag force. We further examine the fundamental mechanism of this dynamical behaviour and propose a force decomposition technique via low-dimensional approximation. To elucidate the frequency lock-in, we systematically analyse the decomposed modes and their dynamical contributions to the force fluctuations for a range of reduced velocity at low Reynolds number laminar flow. These quantitative mode energy contributions demonstrate that the shear layer feeds the vorticity flux to the wake vortices and the near-wake bubble during the wake–body synchronization. Based on the decomposition of wake dynamics, we suggest an interaction cycle for the frequency lock-in during the wake–body interaction, which provides the interrelationship between the high-amplitude motion and the dominating wake features. Through our investigation of wake–body synchronization below critical $Re$ range, we discover that the bluff body can undergo a synchronized high-amplitude vibration due to flexibility-induced unsteadiness. Owing to the wake turbulence at a moderate Reynolds number of $Re=22\,000$, a distorted set of POD modes and the broadband energy distribution are observed, while the interaction cycle for the wake synchronization is found to be valid for the turbulent wake flow.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 492
Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Oztop ◽  
Mikhail A. Sheremet

In this study, thermoelectric generation with impinging hot and cold nanofluid jets is considered with computational fluid dynamics by using the finite element method. Highly conductive CNT particles are used in the water jets. Impacts of the Reynolds number of nanojet stream combinations (between (Re1, Re2) = (250, 250) to (1000, 1000)), horizontal distance of the jet inlet from the thermoelectric device (between (r1, r2) = (−0.25, −0.25) to (1.5, 1.5)), impinging jet inlet to target surfaces (between w2 and 4w2) and solid nanoparticle volume fraction (between 0 and 2%) on the interface temperature variations, thermoelectric output power generation and conversion efficiencies are numerically assessed. Higher powers and efficiencies are achieved when the jet stream Reynolds numbers and nanoparticle volume fractions are increased. Generated power and efficiency enhancements 81.5% and 23.8% when lowest and highest Reynolds number combinations are compared. However, the power enhancement with nanojets using highly conductive CNT particles is 14% at the highest solid volume fractions as compared to pure water jet. Impacts of horizontal location of jet inlets affect the power generation and conversion efficiency and 43% variation in the generated power is achieved. Lower values of distances between the jet inlets to the target surface resulted in higher power generation while an optimum value for the highest efficiency is obtained at location zh = 2.5ws. There is 18% enhancement in the conversion efficiency when distances at zh = ws and zh = 2.5ws are compared. Finally, polynomial type regression models are obtained for estimation of generated power and conversion efficiencies for water-jets and nanojets considering various values of jet Reynolds numbers. Accurate predictions are obtained with this modeling approach and it is helpful in assisting the high fidelity computational fluid dynamics simulations results.


1980 ◽  
Vol 101 (4) ◽  
pp. 721-735 ◽  
Author(s):  
Masaru Kiya ◽  
Hisataka Tamura ◽  
Mikio Arie

The frequency of vortex shedding from a circular cylinder in a uniform shear flow and the flow patterns around it were experimentally investigated. The Reynolds number Re, which was defined in terms of the cylinder diameter and the approaching velocity at its centre, ranged from 35 to 1500. The shear parameter, which is the transverse velocity gradient of the shear flow non-dimensionalized by the above two quantities, was varied from 0 to 0·25. The critical Reynolds number beyond which vortex shedding from the cylinder occurred was found to be higher than that for a uniform stream and increased approximately linearly with increasing shear parameter when it was larger than about 0·06. In the Reynolds-number range 43 < Re < 220, the vortex shedding disappeared for sufficiently large shear parameters. Moreover, in the Reynolds-number range 100 < Re < 1000, the Strouhal number increased as the shear parameter increased beyond about 0·1.


1978 ◽  
Vol 88 (3) ◽  
pp. 541-562 ◽  
Author(s):  
R. J. Hill

Several models are developed for the high-wavenumber portion of the spectral transfer function of scalar quantities advected by high-Reynolds-number, locally isotropic turbulent flow. These models are applicable for arbitrary Prandtl or Schmidt number, v/D, and the resultant scalar spectra are compared with several experiments having different v/D. The ‘bump’ in the temperature spectrum of air observed over land is shown to be due to a tendency toward a viscous-convective range and the presence of this bump is consistent with experiments for large v/D. The wavenumbers defining the transition between the inertial-convective range and viscous-convective range for asymptotically large v/D (denoted k* and k1* for the three- and one-dimensional spectra) are determined by comparison of the models with experiments. A measurement of the transitional wavenumber k1* [denoted (k1*)s] is found to depend on v/D and on any filter cut-off. On the basis of the k* values it is shown that measurements of β1 from temperature spectra in moderate Reynolds number turbulence in air (v/D = 0·72) maybe over-estimates and that the inertial-diffusive range of temperature fluctuations in mercury (v/D ≃ 0·02) is of very limited extent.


Author(s):  
Susan Thomas ◽  
Tim Ameel

An experimental investigation of water flow in a T-shaped channel with rectangular cross section (20 × 20 mm inlet ID and 20 × 40 mm outlet ID) has been conducted for a Reynolds number Re range of 56 to 422, based on inlet diameter. Dynamical conditions and the T-channel geometry of the current study are applicable to the microscale. This study supports a large body of numerical work, and resolution and the interrogation region are extended beyond previous experimental studies. Laser induced fluorescence (LIF) and particle imaging velocimetry (PIV) are used to characterize flow behaviors over the broad range of Re where realistic T-channels operate. Scalar structures previously unresolved in the literature are presented. Special attention is paid to the unsteady flow regimes that develop at moderate Re, which significantly impact mixing but are not yet well characterized or understood. An unsteady symmetric topology, which develops at higher Re and negatively impacts mixing, is presented, and mechanisms behind the wide range of mixing qualities predicted for this regime are explained. An optimal Re operating range is identified based on multiple experimental trials.


Sign in / Sign up

Export Citation Format

Share Document