On scaling pipe flows with sinusoidal transversely corrugated walls: analysis of data from the laminar to the low-Reynolds-number turbulent regime

2015 ◽  
Vol 779 ◽  
pp. 245-274 ◽  
Author(s):  
S. Saha ◽  
J. C. Klewicki ◽  
A. Ooi ◽  
H. M. Blackburn

Direct numerical simulation was used to study laminar and turbulent flows in circular pipes with smoothly corrugated walls. The corrugation wavelength was kept constant at $0.419D$, where $D$ is the mean diameter of the wavy-wall pipe and the corrugation height was varied from zero to $0.08D$. Flow rates were varied in steps between low values that generate laminar flow and higher values where the flow is in the post-transitional turbulent regime. Simulations in the turbulent regime were also carried out at a constant Reynolds number, $\mathit{Re}_{{\it\tau}}=314$, for all corrugation heights. It was found that even in the laminar regime, larger-amplitude corrugations produce flow separation. This leads to the proportion of pressure drop attributable to pressure drag being approximately 50 %, and rising to approximately 85 % in transitional rough-wall flow. The near-wall structure of turbulent flow is seen to be heavily influenced by the effects of flow separation and reattachment. Farther from the wall, the statistical profiles examined exhibit behaviours characteristic of smooth-wall flows or distributed roughness rough-wall flows. These observations support Townsend’s wall-similarity hypothesis. The organized nature of the present roughness allows the mean pressure drop to be written as a function of the corrugation height. When this is exploited in an analysis of the mean dynamical equation, the scaling problem is explicitly revealed to result from the combined influences of roughness and Reynolds number. The present results support the recent analysis and observations of Mehdi et al. (J. Fluid Mech., vol. 731, 2013, pp. 682–712), indicating that the length scale given by the distance from the wall at which the mean viscous force loses leading order is important to describing these combined influences, as well as providing a dynamically self-consistent connection to the scaling structure of smooth-wall pipe flow.

2013 ◽  
Vol 731 ◽  
pp. 682-712 ◽  
Author(s):  
Faraz Mehdi ◽  
J. C. Klewicki ◽  
C. M. White

AbstractThe combined roughness/Reynolds number problem is explored. Existing and newly acquired data from zero pressure gradient rough-wall turbulent boundary layers are used to clarify the leading order balances of terms in the mean dynamical equation. For the variety of roughnesses examined, it is revealed that the mean viscous force retains dominant order above (and often well above) the roughness crests. Mean force balance data are shown to be usefully organized relative to the characteristic length scale, which is equal or proportional to the width of the region from the wall to where the leading order mean dynamics become described by a balance between the mean and turbulent inertia. This is equivalently the width of the region from the wall to where the mean viscous force loses leading order. For both smooth-wall and rough-wall flows, the wall-normal extent of this region consistently ends just beyond the zero-crossing of the turbulent inertia term. In smooth-wall flow this characteristic length is a known function of Reynolds number. The present analyses indicate that for rough-wall flows the wall-normal position where the mean dynamics become inertial is an irreducible function of roughness and Reynolds number, as it is an inherent function of the relative scale separations between the inner, roughness, and outer lengths. These findings indicate that, for any given roughness, new dynamical regimes will typically emerge as the Reynolds number increases. For the present range of parameters, there appear to be three identifiable regimes. These correspond to the ratio of the equivalent sand grain roughness to the characteristic length being less than, equal to, or greater than$O(1)$. The relative influences of the inner, outer, and roughness length scales on the characteristic length are explored empirically. A prediction for the decay rate of the mean vorticity is developed via extension of the smooth-wall theory. Existing data are shown to exhibit good agreement with this extension. Overall, the present results appear to expose unifying connections between the structure of smooth- and rough-wall flows. Among other findings, the present analyses show promise toward providing a self-consistent and dynamically meaningful way of identifying the domain where the wall similarity hypothesis, if operative, should hold.


Author(s):  
Nihad Dukhan ◽  
Angel Alvarez

Wind-tunnel pressure drop measurements for airflow through two samples of forty-pore-per-inch commercially available open-cell aluminum foam were undertaken. Each sample’s cross-sectional area perpendicular to the flow direction measured 10.16 cm by 24.13 cm. The thickness in the flow direction was 10.16 cm for one sample and 5.08 cm for the other. The flow rate ranged from 0.016 to 0.101 m3/s for the thick sample and from 0.025 to 0.134 m3/s for the other. The data were all in the fully turbulent regime. The pressure drop for both samples increased with increasing flow rate and followed a quadratic behavior. The permeability and the inertia coefficient showed some scatter with average values of 4.6 × 10−8 m2 and 2.9 × 10−8 m2, and 0.086 and 0.066 for the thick and the thin samples, respectively. The friction factor decayed with the Reynolds number and was weakly dependent on the Reynolds number for Reynolds number greater than 35.


2016 ◽  
Vol 792 ◽  
pp. 435-469 ◽  
Author(s):  
R. L. Ebner ◽  
Faraz Mehdi ◽  
J. C. Klewicki

The structure of smooth- and rough-wall turbulent boundary layers is investigated using existing data and newly acquired measurements derived from a four element spanwise vorticity sensor. Scaling behaviours and structural features are interpreted using the mean momentum equation based framework described for smooth-wall flows by Klewicki (J. Fluid Mech., vol. 718, 2013, pp. 596–621), and its extension to rough-wall flows by Mehdiet al.(J. Fluid Mech., vol. 731, 2013, pp. 682–712). This framework holds potential relative to identifying and characterizing universal attributes shared by smooth- and rough-wall flows. As prescribed by the theory, the present analyses show that a number of statistical features evidence invariance when normalized using the characteristic length associated with the wall-normal transition to inertial leading-order mean dynamics. On the inertial domain, the spatial size of the advective transport contributions to the mean momentum balance attain approximate proportionality with this length over significant ranges of roughness and Reynolds number. The present results support the hypothesis of Mehdiet al., that outer-layer similarity is, in general, only approximately satisfied in rough-wall flows. This is because roughness almost invariably leaves some imprint on the vorticity field; stemming from the process by which roughness influences (generally augments) the near-wall three-dimensionalization of the vorticity field. The present results further indicate that the violation of outer similarity over regularly spaced spanwise oriented bar roughness correlates with the absence of scale separation between the motions associated with the wall-normal velocity and spanwise vorticity on the inertial domain.


2005 ◽  
Vol 128 (4) ◽  
pp. 734-741 ◽  
Author(s):  
R. Bavière ◽  
G. Gamrat ◽  
M. Favre-Marinet ◽  
S. Le Person

Numerical modeling and analytical approach were used to compute laminar flows in rough-wall microchannels. Both models considered the same arrangements of rectangular prism rough elements in periodical arrays. The numerical results confirmed that the flow is independent of the Reynolds number in the range 1–200. The analytical model needs only one constant for most geometrical arrangements. It compares well with the numerical results. Moreover, both models are consistent with experimental data. They show that the rough elements drag is mainly responsible for the pressure drop across the channel in the upper part of the relative roughness range.


2011 ◽  
Vol 678 ◽  
pp. 451-481 ◽  
Author(s):  
J. ELSNAB ◽  
J. KLEWICKI ◽  
D. MAYNES ◽  
T. AMEEL

The redistribution of mean momentum and vorticity, along with the mechanisms underlying these redistribution processes, is explored for post-laminar flow in fully developed, pressure driven, channel flow. These flows, generically referred to as transitional, include an instability stage and a nonlinear development stage. The central focus is on the nonlinear development stage. The present analyses use existing direct numerical simulation data sets, as well as recently reported high-resolution molecular tagging velocimetry measurements. Primary considerations stem from the emergence of the effects of turbulent inertia as represented by the Reynolds stress gradient in the mean differential statement of dynamics. The results describe the flow evolution following the formation of a non-zero Reynolds stress peak that is known to first arise near the critical layer of the most unstable disturbance. The positive and negative peaks in the Reynolds stress gradient profile are observed to undergo a relative movement toward both the wall and centreline for subsequent increases in Reynolds number. The Reynolds stress profiles are shown to almost immediately exhibit the same sequence of curvatures that exists in the fully turbulent regime. In the transitional regime, the outer inflection point in this profile physically indicates a localized zone within which the mean dynamics are dominated by inertia. These observations connect to recent theoretical findings for the fully turbulent regime, e.g. as described by Fife, Klewicki & Wei (J. Discrete Continuous Dyn. Syst., vol. 24, 2009, p. 781) and Klewicki, Fife & Wei (J. Fluid Mech., vol. 638, 2009, p. 73). In accord with momentum equation analyses at higher Reynolds number, the present observations provide evidence that a logarithmic mean velocity profile is most rapidly approximated on a sub-domain located between the zero in the Reynolds stress gradient (maximum in the Reynolds stress) and the outer region location of the maximal Reynolds stress gradient (inflection point in the Reynolds stress profile). Overall, the present findings provide evidence that the dynamical processes during the post-laminar regime and those operative in the high Reynolds number regime are connected and describable within a single theoretical framework.


2016 ◽  
Vol 795 ◽  
pp. 210-240 ◽  
Author(s):  
D. T. Squire ◽  
C. Morrill-Winter ◽  
N. Hutchins ◽  
M. P. Schultz ◽  
J. C. Klewicki ◽  
...  

Turbulent boundary layer measurements above a smooth wall and sandpaper roughness are presented across a wide range of friction Reynolds numbers, ${\it\delta}_{99}^{+}$, and equivalent sand grain roughness Reynolds numbers, $k_{s}^{+}$ (smooth wall: $2020\leqslant {\it\delta}_{99}^{+}\leqslant 21\,430$, rough wall: $2890\leqslant {\it\delta}_{99}^{+}\leqslant 29\,900$; $22\leqslant k_{s}^{+}\leqslant 155$; and $28\leqslant {\it\delta}_{99}^{+}/k_{s}^{+}\leqslant 199$). For the rough-wall measurements, the mean wall shear stress is determined using a floating element drag balance. All smooth- and rough-wall data exhibit, over an inertial sublayer, regions of logarithmic dependence in the mean velocity and streamwise velocity variance. These logarithmic slopes are apparently the same between smooth and rough walls, indicating similar dynamics are present in this region. The streamwise mean velocity defect and skewness profiles each show convincing collapse in the outer region of the flow, suggesting that Townsend’s (The Structure of Turbulent Shear Flow, vol. 1, 1956, Cambridge University Press.) wall-similarity hypothesis is a good approximation for these statistics even at these finite friction Reynolds numbers. Outer-layer collapse is also observed in the rough-wall streamwise velocity variance, but only for flows with ${\it\delta}_{99}^{+}\gtrsim 14\,000$. At Reynolds numbers lower than this, profile invariance is only apparent when the flow is fully rough. In transitionally rough flows at low ${\it\delta}_{99}^{+}$, the outer region of the inner-normalised streamwise velocity variance indicates a dependence on $k_{s}^{+}$ for the present rough surface.


1992 ◽  
Vol 114 (4) ◽  
pp. 521-526 ◽  
Author(s):  
D. G. Shombert

Fluid dynamic properties of Dacron vascular grafts were studied under controlled steady-flow conditions over a Reynolds number range of 800 to 4500. Knitted and woven grafts having nominal diameters of 6 mm and 10 mm were studied. Thermal anemometry was used to measure centerline velocity at the downstream end of the graft; pressure drop across the graft was also measured. Transition from laminar flow to turbulent flow was observed, and turbulence intensity and turbulent stresses (Reynolds normal stresses) were measured in the turbulent regime. Knitted grafts were found to have greater pressure drop than the woven grafts, and one sample was found to have a critical Reynolds number (Rc) of less than one-half the value of Rc for a smooth-walled tube.


2013 ◽  
Vol 721 ◽  
pp. 155-179 ◽  
Author(s):  
Holger Homann ◽  
Jérémie Bec ◽  
Rainer Grauer

AbstractThe impact of turbulent fluctuations on the forces exerted by a fluid on a towed spherical particle is investigated by means of high-resolution direct numerical simulations. The measurements are carried out using a novel scheme to integrate the two-way coupling between the particle and the incompressible surrounding fluid flow maintained in a high-Reynolds-number turbulent regime. The main idea consists of combining a Fourier pseudo-spectral method for the fluid with an immersed-boundary technique to impose the no-slip boundary condition on the surface of the particle. This scheme is shown to converge as the power $3/ 2$ of the spatial resolution. This behaviour is explained by the ${L}_{2} $ convergence of the Fourier representation of a velocity field displaying discontinuities of its derivative. Benchmarking of the code is performed by measuring the drag and lift coefficients and the torque-free rotation rate of a spherical particle in various configurations of an upstream-laminar carrier flow. Such studies show a good agreement with experimental and numerical measurements from other groups. A study of the turbulent wake downstream of the sphere is also reported. The mean velocity deficit is shown to behave as the inverse of the distance from the particle, as predicted from classical similarity analysis. This law is reinterpreted in terms of the principle of ‘permanence of large eddies’ that relates infrared asymptotic self-similarity to the law of decay of energy in homogeneous turbulence. The developed method is then used to attack the problem of an upstream flow that is in a developed turbulent regime. It is shown that the average drag force increases as a function of the turbulent intensity and the particle Reynolds number. This increase is significantly larger than predicted by standard drag correlations based on laminar upstream flows. It is found that the relevant parameter is the ratio of the viscous boundary layer thickness to the dissipation scale of the ambient turbulent flow. The drag enhancement can be motivated by the modification of the mean velocity and pressure profile around the sphere by small-scale turbulent fluctuations. It is demonstrated that the variance of the drag force fluctuations can be modelled by means of standard drag correlations. Temporal correlations of the drag and lift forces are also presented.


2018 ◽  
Vol 851 ◽  
pp. 1-22 ◽  
Author(s):  
L. Djenidi ◽  
K. M. Talluru ◽  
R. A. Antonia

This paper examines the Reynolds number ($Re$) dependence of a zero-pressure-gradient (ZPG) turbulent boundary layer (TBL) which develops over a two-dimensional rough wall with a view to ascertaining whether this type of boundary layer can become independent of $Re$. Measurements are made using hot-wire anemometry over a rough wall that consists of a periodic arrangement of cylindrical rods with a streamwise spacing of eight times the rod diameter. The present results, together with those obtained over a sand-grain roughness at high Reynolds number, indicate that a $Re$-independent state can be achieved at a moderate $Re$. However, it is also found that the mean velocity distributions over different roughness geometries do not collapse when normalised by appropriate velocity and length scales. This lack of collapse is attributed to the difference in the drag coefficient between these geometries. We also show that the collapse of the $U_{\unicode[STIX]{x1D70F}}$-normalised mean velocity defect profiles may not necessarily reflect $Re$-independence. A better indicator of the asymptotic state of $Re$ is the mean velocity defect profile normalised by the free-stream velocity and plotted as a function of $y/\unicode[STIX]{x1D6FF}$, where $y$ is the vertical distance from the wall and $\unicode[STIX]{x1D6FF}$ is the boundary layer thickness. This is well supported by the measurements.


Sign in / Sign up

Export Citation Format

Share Document