scholarly journals On the structure of the self-sustaining cycle in separating and reattaching flows

2018 ◽  
Vol 857 ◽  
pp. 907-936 ◽  
Author(s):  
A. Cimarelli ◽  
A. Leonforte ◽  
D. Angeli

The separating and reattaching flows and the wake of a finite rectangular plate are studied by means of direct numerical simulation data. The large amount of information provided by the numerical approach is exploited here to address the multi-scale features of the flow and to assess the self-sustaining mechanisms that form the basis of the main unsteadinesses of the flows. We first analyse the statistically dominant flow structures by means of three-dimensional spatial correlation functions. The developed flow is found to be statistically dominated by quasi-streamwise vortices and streamwise velocity streaks as a result of flow motions induced by hairpin-like structures. On the other hand, the reverse flow within the separated region is found to be characterized by spanwise vortices. We then study the spectral properties of the flow. Given the strongly inhomogeneous nature of the flow, the spectral analysis has been conducted along two selected streamtraces of the mean velocity field. This approach allows us to study the spectral evolution of the flow along its paths. Two well-separated characteristic scales are identified in the near-wall reverse flow and in the leading-edge shear layer. The first is recognized to represent trains of small-scale structures triggering the leading-edge shear layer, whereas the second is found to be related to a very large-scale phenomenon that embraces the entire flow field. A picture of the self-sustaining mechanisms of the flow is then derived. It is shown that very-large-scale fluctuations of the pressure field alternate between promoting and suppressing the reverse flow within the separation region. Driven by these large-scale dynamics, packages of small-scale motions trigger the leading-edge shear layers, which in turn created them, alternating in the top and bottom sides of the rectangular plate with a relatively long period of inversion, thus closing the self-sustaining cycle.

2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Teng Cao ◽  
Tadashi Kanzaka ◽  
Liping Xu ◽  
Tobias Brandvik

Abstract In this paper, an unsteady tip leakage flow phenomenon is identified and investigated in a centrifugal compressor with a vaneless diffuser at near-stall conditions. This phenomenon is associated with the inception of a rotating instability in the compressor. The study is based on numerical simulations that are supported by experimental measurements. The study confirms that the unstable flow is governed by a Kelvin–Helmholtz type instability of the shear layer formed between the main-stream flow and the tip leakage flow. The shear layer instability induces large-scale vortex roll-up and forms vortex tubes, which propagate circumferentially, resulting in measured pressure fluctuations with short wavelength and high amplitude which rotate at about half of the blade speed. The 3D vortex tube is also found to interact with the main blade leading edge, causing the reduction of the blade loading identified in the experiment. The paper also reveals that the downstream volute imposes a once-per-rev circumferential nonuniform back pressure at the impeller exit, inducing circumferential loading variation at the impeller inducer, and causing circumferential variation in the unsteady tip leakage flow.


2021 ◽  
Vol 929 ◽  
Author(s):  
N. Agastya Balantrapu ◽  
Christopher Hickling ◽  
W. Nathan Alexander ◽  
William Devenport

Experiments were performed over a body of revolution at a length-based Reynolds number of 1.9 million. While the lateral curvature parameters are moderate ( $\delta /r_s < 2, r_s^+>500$ , where $\delta$ is the boundary layer thickness and r s is the radius of curvature), the pressure gradient is increasingly adverse ( $\beta _{C} \in [5 \text {--} 18]$ where $\beta_{C}$ is Clauser’s pressure gradient parameter), representative of vehicle-relevant conditions. The mean flow in the outer regions of this fully attached boundary layer displays some properties of a free-shear layer, with the mean-velocity and turbulence intensity profiles attaining self-similarity with the ‘embedded shear layer’ scaling (Schatzman & Thomas, J. Fluid Mech., vol. 815, 2017, pp. 592–642). Spectral analysis of the streamwise turbulence revealed that, as the mean flow decelerates, the large-scale motions energize across the boundary layer, growing proportionally with the boundary layer thickness. When scaled with the shear layer parameters, the distribution of the energy in the low-frequency region is approximately self-similar, emphasizing the role of the embedded shear layer in the large-scale motions. The correlation structure of the boundary layer is discussed at length to supply information towards the development of turbulence and aeroacoustic models. One major finding is that the estimation of integral turbulence length scales from single-point measurements, via Taylor's hypothesis, requires significant corrections to the convection velocity in the inner 50 % of the boundary layer. The apparent convection velocity (estimated from the ratio of integral length scale to the time scale), is approximately 40 % greater than the local mean velocity, suggesting the turbulence is convected much faster than previously thought. Closer to the wall even higher corrections are required.


1999 ◽  
Vol 382 ◽  
pp. 307-329 ◽  
Author(s):  
JUDITH K. FOSS ◽  
K. B. M. Q. ZAMAN

The large- and small-scale vortical motions produced by ‘delta tabs’ in a two-stream shear layer have been studied experimentally. An increase in mixing was observed when the base of the triangular shaped tab was affixed to the trailing edge of the splitter plate and the apex was pitched at some angle with respect to the flow axis. Such an arrangement produced a pair of counter-rotating streamwise vortices. Hot-wire measurements detailed the velocity, time-averaged vorticity (Ωx) and small-scale turbulence features in the three-dimensional space downstream of the tabs. The small-scale structures, whose scale corresponds to that of the peak in the dissipation spectrum, were identified and counted using the peak-valley-counting technique. The optimal pitch angle, θ, for a single tab and the optimal spanwise spacing, S, for a multiple tab array were identified. Since the goal was to increase mixing, the optimal tab configuration was determined from two properties of the flow field: (i) the large-scale motions with the maximum Ωx, and (ii) the largest number of small-scale motions in a given time period. The peak streamwise vorticity magnitude [mid ]Ωx−max[mid ] was found to have a unique relationship with the tab pitch angle. Furthermore, for all cases examined, the overall small-scale population was found to correlate directly with [mid ]Ωx−max[mid ]. Both quantities peaked at θ≈±45°. It is interesting to note that the peak magnitude of the corresponding circulation in the cross-sectional plane occurred for θ≈±90°. For an array of tabs, the two quantities also depended on the tab spacing. An array of contiguous tabs acted as a solid deflector producing the weakest streamwise vortices and the least small-scale population. For the measurement range covered, the optimal spacing was found to be S≈1.5 tab widths.


1949 ◽  
Vol 2 (4) ◽  
pp. 451 ◽  
Author(s):  
AA Townsend

Extending previous work on turbulent diffusion in the wake of a circular-cylinder, a series of measurements have been made of the turbulent transport of mean stream momentum, turbulent energy, and heat in the wake of a cylinder of 0.169 cm. diameter, placed in an air-stream of velocity 1280 cm. sec.-1. It has been possible to extend the measurements to 960 diameters down-stream from the cylinder, and it 1s found that, at distances in excess of 600 diameters, the requirements of dynamical similarity are very nearly satisfied. To account for the observed rates of transport of turbulent energy and heat, it is necessary that only part of this transport be due to bulk convection by the slow large-scale motion of the jets of turbulent fluid emitted by the central, fully turbulent core of the wake, which had been supposed previously to perform most of the transport. The remainder of the transport is carried out by the small-scale diffusive motion of the turbulent eddies within the jets, and may be described by assigning diffusion coefficients to the turbulent fluid. It is found that the diffusion coefficients for momentum and heat are approximately equal, but that for turbulent energy is considerably smaller. On the basis of these hypotheses, it is possible to calculate $he form of the mean velocity distribution in good agreement with experiment, and to give a qualitative explanation of the apparently more rapid diffusion of heat.


2018 ◽  
Vol 856 ◽  
pp. 135-168 ◽  
Author(s):  
S. T. Salesky ◽  
W. Anderson

A number of recent studies have demonstrated the existence of so-called large- and very-large-scale motions (LSM, VLSM) that occur in the logarithmic region of inertia-dominated wall-bounded turbulent flows. These regions exhibit significant streamwise coherence, and have been shown to modulate the amplitude and frequency of small-scale inner-layer fluctuations in smooth-wall turbulent boundary layers. In contrast, the extent to which analogous modulation occurs in inertia-dominated flows subjected to convective thermal stratification (low Richardson number) and Coriolis forcing (low Rossby number), has not been considered. And yet, these parameter values encompass a wide range of important environmental flows. In this article, we present evidence of amplitude modulation (AM) phenomena in the unstably stratified (i.e. convective) atmospheric boundary layer, and link changes in AM to changes in the topology of coherent structures with increasing instability. We perform a suite of large eddy simulations spanning weakly ($-z_{i}/L=3.1$) to highly convective ($-z_{i}/L=1082$) conditions (where$-z_{i}/L$is the bulk stability parameter formed from the boundary-layer depth$z_{i}$and the Obukhov length $L$) to investigate how AM is affected by buoyancy. Results demonstrate that as unstable stratification increases, the inclination angle of surface layer structures (as determined from the two-point correlation of streamwise velocity) increases from$\unicode[STIX]{x1D6FE}\approx 15^{\circ }$for weakly convective conditions to nearly vertical for highly convective conditions. As$-z_{i}/L$increases, LSMs in the streamwise velocity field transition from long, linear updrafts (or horizontal convective rolls) to open cellular patterns, analogous to turbulent Rayleigh–Bénard convection. These changes in the instantaneous velocity field are accompanied by a shift in the outer peak in the streamwise and vertical velocity spectra to smaller dimensionless wavelengths until the energy is concentrated at a single peak. The decoupling procedure proposed by Mathiset al.(J. Fluid Mech., vol. 628, 2009a, pp. 311–337) is used to investigate the extent to which amplitude modulation of small-scale turbulence occurs due to large-scale streamwise and vertical velocity fluctuations. As the spatial attributes of flow structures change from streamwise to vertically dominated, modulation by the large-scale streamwise velocity decreases monotonically. However, the modulating influence of the large-scale vertical velocity remains significant across the stability range considered. We report, finally, that amplitude modulation correlations are insensitive to the computational mesh resolution for flows forced by shear, buoyancy and Coriolis accelerations.


2016 ◽  
Vol 804 ◽  
pp. 278-297 ◽  
Author(s):  
J. P. J. Stevenson ◽  
K. P. Nolan ◽  
E. J. Walsh

The free shear layer that separates from the leading edge of a round-nosed plate has been studied under conditions of low (background) and elevated (grid-generated) free stream turbulence (FST) using high-fidelity particle image velocimetry. Transition occurs after separation in each case, followed by reattachment to the flat surface of the plate downstream. A bubble of reverse flow is thereby formed. First, we find that, under elevated (7 %) FST, the time-mean bubble is almost threefold shorter due to an accelerated transition of the shear layer. Quadrant analysis of the Reynolds stresses reveals the presence of slender, highly coherent fluctuations amid the laminar part of the shear layer that are reminiscent of the boundary-layer streaks seen in bypass transition. Instability and the roll-up of vortices then follow near the crest of the shear layer. These vortices are also present under low FST and in both cases are found to make significant contributions to the production of Reynolds stress over the rear of the bubble. But their role in reattachment, whilst important, is not yet fully clear. Instantaneous flow fields from the low-FST case reveal that the bubble of reverse flow often breaks up into two or more parts, thereby complicating the overall reattachment process. We therefore suggest that the downstream end of the ‘separation isoline’ (the locus of zero absolute streamwise velocity that extends unbroken from the leading edge) be used to define the instantaneous reattachment point. A histogram of this point is found to be bimodal: the upstream peak coincides with the location of roll-up, whereas the downstream mode may suggest a ‘flapping’ motion.


2008 ◽  
Vol 596 ◽  
pp. 49-72 ◽  
Author(s):  
HIROSHI HIGUCHI ◽  
HIDEO SAWADA ◽  
HIROYUKI KATO

The flow over cylinders of varying fineness ratio (length to diameter) aligned with the free stream was examined using a magnetic suspension and balance system in order to avoid model support interference. The drag coefficient variation of a right circular cylinder was obtained for a wide range of fineness ratios. Particle image velocimetry (PIV) was used to examine the flow field, particularly the behaviour of the leading-edge separation shear layer and its effect on the wake. Reynolds numbers based on the cylinder diameter ranged from 5×104 to 1.1×105, while the major portion of the experiment was conducted at ReD=1.0×105. For moderately large fineness ratio, the shear layer reattaches with subsequent growth of the boundary layer, whereas over shorter cylinders, the shear layer remains detached. Differences in the wake recirculation region and the immediate wake patterns are clarified in terms of both the mean velocity and turbulent flow fields, including longitudinal vortical structures in the cross-flow plane of the wake. The minimum drag corresponded to the fineness ratio for which the separated shear layer reattached at the trailing edge of the cylinder. The base pressure was obtained with a telemetry technique. Pressure fields and aerodynamic force fluctuations are also discussed.


2011 ◽  
Vol 673 ◽  
pp. 255-285 ◽  
Author(s):  
N. HUTCHINS ◽  
J. P. MONTY ◽  
B. GANAPATHISUBRAMANI ◽  
H. C. H. NG ◽  
I. MARUSIC

An array of surface hot-film shear-stress sensors together with a traversing hot-wire probe is used to identify the conditional structure associated with a large-scale skin-friction event in a high-Reynolds-number turbulent boundary layer. It is found that the large-scale skin-friction events convect at a velocity that is much faster than the local mean in the near-wall region (the convection velocity for large-scale skin-friction fluctuations is found to be close to the local mean at the midpoint of the logarithmic region). Instantaneous shear-stress data indicate the presence of large-scale structures at the wall that are comparable in scale and arrangement to the superstructure events that have been previously observed to populate the logarithmic regions of turbulent boundary layers. Conditional averages of streamwise velocity computed based on a low skin-friction footprint at the wall offer a wider three-dimensional view of the average superstructure event. These events consist of highly elongated forward-leaning low-speed structures, flanked on either side by high-speed events of similar general form. An analysis of small-scale energy associated with these large-scale events reveals that the small-scale velocity fluctuations are attenuated near the wall and upstream of a low skin-friction event, while downstream and above the low skin-friction event, the fluctuations are significantly amplified. In general, it is observed that the attenuation and amplification of the small-scale energy seems to approximately align with large-scale regions of streamwise acceleration and deceleration, respectively. Further conditional averaging based on streamwise skin-friction gradients confirms this observation. A conditioning scheme to detect the presence of meandering large-scale structures is also proposed. The large-scale meandering events are shown to be a possible source of the strong streamwise velocity gradients, and as such play a significant role in modulating the small-scale motions.


1999 ◽  
Vol 121 (3) ◽  
pp. 577-587 ◽  
Author(s):  
F. Muldoon ◽  
S. Acharya

Results of a three-dimensional unsteady computational study of a row of jets injected normal to a crossflow are presented with the aim of understanding the dynamics of the large-scale structures in the region near the jet. The jet to crossflow velocity ratio is 0.5. A modified version of the computer program (INS3D), which utilizes the method of artificial compressibility, is used for the computations. Results obtained clearly indicate that the near-field large-scale structures are extremely dynamic in nature, and undergo breakup and reconnection processes. The dynamic near-field structures identified include the counterrotating vortex pair (CVP), the horseshoe vortex, wake vortex, wall vortex, and shear layer vortex. The dynamic features of these vortices are presented in this paper. The CVP is observed to be a convoluted structure interacting with the wall and horseshoe vortices. The shear layer vortices are stripped by the crossflow, and undergo pairing and stretching events in the leeward side of the jet. The wall vortex is reoriented into the upright wake system. Comparison of the predictions with mean velocity measurements is made. Reasonable agreement is observed.


2002 ◽  
Vol 450 ◽  
pp. 377-407 ◽  
Author(s):  
S. A. STANLEY ◽  
S. SARKAR ◽  
J. P. MELLADO

Turbulent plane jets are prototypical free shear flows of practical interest in propulsion, combustion and environmental flows. While considerable experimental research has been performed on planar jets, very few computational studies exist. To the authors' knowledge, this is the first computational study of spatially evolving three-dimensional planar turbulent jets utilizing direct numerical simulation. Jet growth rates as well as the mean velocity, mean scalar and Reynolds stress profiles compare well with experimental data. Coherency spectra, vorticity visualization and autospectra are obtained to identify inferred structures. The development of the initial shear layer instability, as well as the evolution into the jet column mode downstream is captured well.The large- and small-scale anisotropies in the jet are discussed in detail. It is shown that, while the large scales in the flow field adjust slowly to variations in the local mean velocity gradients, the small scales adjust rapidly. Near the centreline of the jet, the small scales of turbulence are more isotropic. The mixing process is studied through analysis of the probability density functions of a passive scalar. Immediately after the rollup of vortical structures in the shear layers, the mixing process is dominated by large-scale engulfing of fluid. However, small-scale mixing dominates further downstream in the turbulent core of the self-similar region of the jet and a change from non-marching to marching PDFs is observed. Near the jet edges, the effects of large-scale engulfing of coflow fluid continue to influence the PDFs and non-marching type behaviour is observed.


Sign in / Sign up

Export Citation Format

Share Document