large scale structures
Recently Published Documents


TOTAL DOCUMENTS

883
(FIVE YEARS 151)

H-INDEX

53
(FIVE YEARS 8)

2022 ◽  
Vol 924 (2) ◽  
pp. 75
Author(s):  
Youhei Masada ◽  
Tomoya Takiwaki ◽  
Kei Kotake

Abstract To study properties of magnetohydrodynamic (MHD) convection and resultant dynamo activities in proto-neutron stars (PNSs), we construct a “PNS in a box” simulation model and solve the compressible MHD equation coupled with a nuclear equation of state (EOS) and simplified leptonic transport. As a demonstration, we apply it to two types of PNS model with different internal structures: a fully convective model and a spherical-shell convection model. By varying the spin rate of the models, the rotational dependence of convection and the dynamo that operate inside the PNS is investigated. We find that, as a consequence of turbulent transport by rotating stratified convection, large-scale structures of flow and thermodynamic fields are developed in all models. Depending on the spin rate and the depth of the convection zone, various profiles of the large-scale structures are obtained, which can be physically understood as steady-state solutions to the “mean-field” equation of motion. Additionally to those hydrodynamic structures, a large-scale magnetic component of  ( 10 15 ) G is also spontaneously organized in disordered tangled magnetic fields in all models. The higher the spin rate, the stronger the large-scale magnetic component grows. Intriguingly, as an overall trend, the fully convective models have a stronger large-scale magnetic component than that in the spherical-shell convection models. The deeper the convection zone extends, the larger the size of the convective eddies becomes. As a result, rotationally constrained convection seems to be more easily achieved in the fully convective model, resulting in a higher efficiency of the large-scale dynamo there. To gain a better understanding of the origin of the diversity of a neutron star’s magnetic field, we need to study the PNS dynamo in a wider parameter range.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 506
Author(s):  
Matteo Martinelli ◽  
Santiago Casas

In this review, we outline the expected tests of gravity that will be achieved at cosmological scales in the upcoming decades. We focus mainly on constraints on phenomenologically parameterized deviations from general relativity, which allow to test gravity in a model-independent way, but also review some of the expected constraints obtained with more physically motivated approaches. After reviewing the state-of-the-art for such constraints, we outline the expected improvement that future cosmological surveys will achieve, focusing mainly on future large-scale structures and cosmic microwave background surveys but also looking into novel probes on the nature of gravity. We will also highlight the necessity of overcoming accuracy issues in our theoretical predictions, issues that become relevant due to the expected sensitivity of future experiments.


2021 ◽  
Vol 923 (2) ◽  
pp. 153
Author(s):  
Fuyu Dong ◽  
Pengjie Zhang ◽  
Le Zhang ◽  
Ji Yao ◽  
Zeyang Sun ◽  
...  

Abstract Low-density points (LDPs), obtained by removing high-density regions of observed galaxies, can trace the large-scale structures (LSSs) of the universe. In particular, it offers an intriguing opportunity to detect weak gravitational lensing from low-density regions. In this work, we investigate the tomographic cross-correlation between Planck cosmic microwave background (CMB) lensing maps and LDP-traced LSSs, where LDPs are constructed from the DR8 data release of the DESI legacy imaging survey, with about 106–107 galaxies. We find that, due to the large sky coverage (20,000 deg2) and large redshift depth (z ≤ 1.2), a significant detection (10σ–30σ) of the CMB lensing–LDP cross-correlation in all six redshift bins can be achieved, with a total significance of ∼53σ over ℓ ≤ 1024. Moreover, the measurements are in good agreement with a theoretical template constructed from our numerical simulation in the WMAP 9 yr ΛCDM cosmology. A scaling factor for the lensing amplitude A lens is constrained to A lens = 1 ± 0.12 for z < 0.2, A lens = 1.07 ± 0.07 for 0.2 < z < 0.4, and A lens = 1.07 ± 0.05 for 0.4 < z < 0.6, with the r-band absolute magnitude cut of −21.5 for LDP selection. A variety of tests have been performed to check the detection reliability against variations in LDP samples and galaxy magnitude cuts, masks, CMB lensing maps, multipole ℓ cuts, sky regions, and photo-z bias. We also perform a cross-correlation measurement between CMB lensing and galaxy number density, which is consistent with the CMB lensing–LDP cross-correlation. This work therefore further convincingly demonstrates that LDP is a competitive tracer of LSS.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhongchao Qiu ◽  
Jinquan Zhang ◽  
Yuntian Teng ◽  
Zhitao Gao ◽  
Li Hong

AbstractIt is critical for the health monitoring of large-scale structures such as bridge, railway and tunnel to acquire the medium-frequency and high-frequency vibration signals. To solve the problems of low sensitivity and poor transverse anti-interference of the medium-frequency and high-frequency fiber acceleration sensor, a hinge-type Fiber Bragg Grating(FBG) acceleration sensor based on double elastic plate has been proposed, and the hinge and elastic plate are used as elastomer to realize the miniaturization and transverse interference suppression of the sensor. The MATLAB and the ANSYS are used for theoretical analysis and optimization of sensor sensitivity and resonance frequency, structural static stress analysis and modal simulation analysis, while the test system is built to test the sensor performance. The results show that the resonance frequency of the sensor is 1300 Hz; the sensor has a flat sensitivity response in the middle-high frequency band of 200–800 Hz; the sensitivity is about 20 pm/g, and the fiber central wavelength drift and acceleration have good linearity and stability, while the transverse anti-interference is about 3.16%, which provides a new idea for monitoring of medium-frequency and high-frequency vibration signals in large-scale structures.


Sign in / Sign up

Export Citation Format

Share Document