scholarly journals Interface-resolved direct numerical simulations of sediment transport in a turbulent oscillatory boundary layer

2020 ◽  
Vol 885 ◽  
Author(s):  
Marco Mazzuoli ◽  
Paolo Blondeaux ◽  
Giovanna Vittori ◽  
Markus Uhlmann ◽  
Julian Simeonov ◽  
...  

2021 ◽  
Vol 928 ◽  
Author(s):  
Dimitrios K. Fytanidis ◽  
Marcelo H. García ◽  
Paul F. Fischer

Direct numerical simulations of oscillatory boundary-layer flows in the transitional regime were performed to explain discrepancies in the literature regarding the phase difference ${\rm \Delta} \phi$ between the bed-shear stress and free-stream velocity maxima. Recent experimental observations in smooth bed oscillatory boundary-layer (OBL) flows, showed a significant change in the widely used ${\rm \Delta} \phi$ diagram (Mier et al., J. Fluid Mech., vol. 922, 2021, A29). However, the limitations of the point-wise measurement technique did not allow us to associate this finding with the turbulent kinetic energy budget and to detect the approach to a ‘near-equilibrium’ condition, defined in a narrow sense herein. Direct numerical simulation results suggest that a phase lag occurs as the result of a delayed and incomplete transition of OBL flows to a stage that mimics the fully turbulent regime. Data from the literature were also used to support the presence of the phase lag and propose a new ${\rm \Delta} \phi$ diagram. Simulations performed for ${\textit {Re}}_{\delta }=671$ confirmed the sensitivity in the development of self-sustained turbulence on the background disturbances ( $\textit{Re}_{\delta}=U_{o}\delta/\nu$ , where $\delta=[2\nu/\omega]^{1/2}$ is the Stokes' length, $U_{o}$ is the maximum free stream velocity of the oscillation, $\nu$ is the kinematic viscosity and $\omega=2{\rm \pi}/T$ is the angular velocity based on the period of the oscillation T). Variations of the mean velocity slope and intersect values for oscillatory flows are also explained in terms of the proximity to near-equilibrium conditions. Relaminarization and transition effects can significantly delay the development of OBL flows, resulting in an incomplete transition. The shape and defect factors are examined as diagnostic parameters for conditions that allow the formation of a logarithmic profile with the universal von Kármán constant and intersect. These findings are of relevance for environmental fluid mechanics and coastal morphodynamics/engineering applications.


Author(s):  
Joshua R. Brinkerhoff ◽  
Metin I. Yaras

This paper describes numerical simulations of the instability mechanisms in a separation bubble subjected to a three-dimensional freestream pressure distribution. Two direct numerical simulations are performed of a separation bubble with laminar separation and turbulent reattachment under low freestream turbulence at flow Reynolds numbers and streamwise pressure distributions that approximate the conditions encountered on the suction side of typical low-pressure gas-turbine blades with blade sweep angles of 0° and 45°. The three-dimensional pressure field in the swept configuration produces a crossflow-velocity component in the laminar boundary layer upstream of the separation point that is unstable to a crossflow instability mode. The simulation results show that crossflow instability does not play a role in the development of the boundary layer upstream of separation. An increase in the amplification rate and most amplified disturbance frequency is observed in the separated-flow region of the swept configuration, and is attributed to boundary-layer conditions at the point of separation that are modified by the spanwise pressure gradient. This results in a slight upstream movement of the location where the shear layer breaks down to small-scale turbulence and modifies the turbulent mixing of the separated shear layer to yield a downstream shift in the time-averaged reattachment location. The results demonstrate that although crossflow instability does not appear to have a noticeable effect on the development of the transitional separation bubble, the 3D pressure field does indirectly alter the separation-bubble development by modifying the flow conditions at separation.


Sign in / Sign up

Export Citation Format

Share Document