Investigation on Propeller Slipstream by Using an Unstructured Rans Solver Based on Overlapping Grids

2017 ◽  
Vol 34 (2) ◽  
pp. 89-101 ◽  
Author(s):  
X. Q. Gong ◽  
M. S. Ma ◽  
J. Zhang ◽  
J. Tang

AbstractBased on unstructured hybrid grid and dynamic overlapping grid technique, numerical simulations of Unsteady Reynolds Averaged Navier-Stokes equations were performed and investigation on isolated propeller aerodynamic characteristics and effects of propeller slipstream on turboprops were undertaken. The computational grid consisted of rotational subzone of propeller and stationary major-zone of aircraft, and walls criterion was used in the automatic hole-cutting procedure. Distance weight interpolation and tri-linear interpolation were developed to transfer information between the rotational and stationary subzones. The boundaries of overlapping grids were optimized for fixed axis rotation. The governing equations were solved by dual-time method and Lower Upper-Symmetric Gauss-Seidel method. The method and grid technique were verified by isolated propeller configuration and the computational results were in well agreement with the experimental data. The grid independence was studied to establish the numerical results. Finally, the flow around a turboprop case was simulated and the influence of propeller slipstream was presented by analyzing the surface pressure contours, profile pressure distribution, vorticity contours and profile streamline. It's indicated that the slipstream accelerates and rotates the free stream flow, changing the local angle of attack, enhancing the downwash effects, affecting the pressure distribution on wing and horizontal tail, as well as increasing the drag coefficient, pitching moment coefficient and the slope of lift coefficient.

2021 ◽  
Author(s):  
Chen Li ◽  
Peiting Sun ◽  
Hongming Wang

The leading-edge bulges along the extension direction are designed on the marine wingsail. The height and the spanwise wavelength of the protuberances are 0.1c and 0.25c, respectively. At Reynolds number Re=5×105, the Reynolds Averaged Navier-Stokes equations are applied to the simulation of the wingsail with the bulges thanks to ANSYS Fluent finite-volume solver based on the SST K-ω models. The grid independence analysis is carried out with the lift and drag coefficients of the wingsail at AOA = 8° and AOA=20°. The results show that while the efficiency of the wingsail is reduced by devising the leading-edge bulges before stall, the bulges help to improve the lift coefficient of the wingsail when stalling. At AOA=22° under the action of the leading-edge tubercles, a convective vortex is formed on the suction surface of the modified wingsail, which reduces the flow loss. So the bulges of the wingsail can delay the stall.


2021 ◽  
Author(s):  
Shima Yazdani ◽  
Erfan Salimipour ◽  
Ayoob Salimipour

Abstract The present paper numerically investigates the performance of a Co-Flow Jet (CFJ) on the static and dynamic stall control of the NACA 0024 airfoil at Reynolds number 1.5 × 105. The two-dimensional Reynolds-averaged Navier-Stokes equations are solved using the SST k-ω turbulence model. The results show that the lift coefficients at the low angles of attack (up to α = 15̊) are significantly increased at Cµ = 0.06, however for the higher momentum coefficients, it is not seen an improvement in the aerodynamic characteristics. Also, the dynamic stall for a range of α between 0̊ and 20̊ at the mentioned Reynolds number and with the reduced frequency of 0.15 for two CFJ cases with Cµ = 0.05 and 0.07 are investigated. For the case with Cµ = 0.07, the lift coefficient curve did not present a noticeable stall feature compared to Cµ = 0.05. The effect of this active flow control by increasing the Reynolds numbers from 0.5 × 105 to 3 × 105 is also investigated. At all studied Reynolds numbers, the lift coefficient enhances as the momentum coefficient increases where its best performance is obtained at the angle of attack α = 15̊.


Author(s):  
Junwei Zhong ◽  
Jingyin Li ◽  
Penghua Guo

A cylindrical rod placed at the leading edge of the S809 airfoil is used as an alternative for the conventional vortex generators. In this paper, extensive numerical investigations have been conducted on the effects of the rod on the static and dynamic stall performance of the S809 airfoil. The flows around the stationary and sinusoidally oscillating S809 airfoils at Re = 106 are simulated by solving the unsteady two-dimensional Reynolds-averaged Navier–Stokes equations with the Shear Stress Transport k–ω model. For the stationary airfoil, the leading edge rod can effectively enhance the aerodynamic characteristics of the airfoil and delay the stall angle, with the maximum lift–drag ratio increased by 30.7%. For the airfoil undergoing deep dynamic stall, the rod shows the capacity of eliminating the dynamic stall vortex at the leading edge and suppressing the flow separation at the tailing edge. It also reduces the peak of the negative pitching moment and the hysteresis effects substantially, and eliminates the negative damping sub-loop of the moment coefficient. Moreover, the distance between the rod and the airfoil has a strong influence on the lift forces but little effect on drag and moment coefficients of airfoil under deep dynamic stall.


2019 ◽  
Vol 23 (Suppl. 2) ◽  
pp. 599-605
Author(s):  
Sergey Peigin ◽  
Nikita Pushchin ◽  
Sergey Timchenko

A new technology of the optimal design of aerodynamic configurations based on a new generation software product is used for aerodynamic design of a 3-D wing of the middle class unmanned aerial vehicle. The optimal shape of the wing, which is characterized by minimum total drag at a fixed lift coefficient and corresponding to the specified geometric and aerodynamic constraints, is determined on the basis of the global search method and numerical solutions of the complete Navier-Stokes equations. It is shown that the proposed approach provides reduction in a wing drag in the cruise flight zone and significantly reduces the material and time costs for aerodynamic aircraft design. Optimal wing has a significantly lower drag at the main design point, and it can be used during cruising and in its vicinity. Optimization allows improving of the glider wing quality. Optimal wing is distinguished by better aerodynamic characteristics in the wide vicinity of design point in terms of the Mach numbers and lift coefficient. Such wing is resistant to the small changes in the flight conditions and it meets all given geometric and aerodynamic constraints.


2013 ◽  
Vol 390 ◽  
pp. 141-146
Author(s):  
Yu Fu Wang ◽  
Guo Quan Tao ◽  
Ze Hai Wang ◽  
Zhe Wu

In this paper, a low Reynolds number airfoil (S1223) is the objective of the study. The Navier-Stokes equations were established to simulate the complex flow around a low Reynolds number airfoil, in which the turbulence model was used. The complex flow around the airfoil was simulated at 2x105 Reynolds number and its aerodynamic characteristics were analyzed. The relationship among lift coefficient, drag coefficient and angle of attack was studied.


2019 ◽  
Vol 21 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Yi Li ◽  
Yang Zhang ◽  
Junqiang Bai

Abstract Aerial refueling technology has been widely applied in various fields and it is one of the hotspots but difficulties for the aeronautical technologies. DLR-F6 WBNP model is used as a tanker and a fighter model is used as a receiver. The flow field of Probe–Drogue refueling and Flying Boom refueling is numerically simulated using the Reynolds-averaged Navier–Stokes equations, and the effects of the jet flow and the aerodynamic characteristics of the receiver are taken into consideration. The results indicate that the effect of downwash of the tanker reduces the lift coefficient and decreases the pitching moment coefficient of the receiver. The jet flow of tanker increases the dynamic pressure while decreases the local angle of attack, which increases the pressure difference between the upper and lower surfaces of receiver. Compared with the results without jet, the jet flow can increase the lift and the drag of the receiver and reduces the pitching moment, and even cause the change of rolling moment direction. Therefore, engine jet is an important factor when simulating aerial refueling.


2015 ◽  
Vol 3 (2) ◽  
pp. 28-49
Author(s):  
Ridha Alwan Ahmed

       In this paper, the phenomena of vortex shedding from the circular cylinder surface has been studied at several Reynolds Numbers (40≤Re≤ 300).The 2D, unsteady, incompressible, Laminar flow, continuity and Navier Stokes equations have been solved numerically by using CFD Package FLUENT. In this package PISO algorithm is used in the pressure-velocity coupling.        The numerical grid is generated by using Gambit program. The velocity and pressure fields are obtained upstream and downstream of the cylinder at each time and it is also calculated the mean value of drag coefficient and value of lift coefficient .The results showed that the flow is strongly unsteady and unsymmetrical at Re>60. The results have been compared with the available experiments and a good agreement has been found between them


Author(s):  
Cheng-Hsien Chen ◽  
Yuan Kang ◽  
Yeon-Pun Chang ◽  
De-Xing Peng ◽  
Ding-Wen Yang

This paper studies the influences of recess geometry and restrictor dimensions on the flow patterns and pressure distribution of lubricant film, which are coupled effects of hybrid characteristics of a hydrostatic bearing. The lubricant flow is described by using the Navier-Stokes equations. The Galerkin weighted residual finite element method is applied to determine the lubricant velocities and pressure in the bearing clearance. The numerical simulations will evaluate the effects of the land-width ratio and restriction parameter as well as the influence of modified Reynolds number and the jet-strength coefficient on the flow patterns in the recess and pressure distribution in lubricant film. On the basis of the simulation drawn from this study, the simulated results are expected to help engineers make better use of the design of hydrostatic bearing and its restrictors.


2013 ◽  
Vol 3 (4) ◽  
Author(s):  
Alexander Kuzmin

AbstractTransonic flow past a Whitcomb airfoil and two modifications of it at Reynolds numbers of the order of ten millions is studied. The numerical modeling is based on the system of Reynolds-averaged Navier-Stokes equations. The flow simulations show that variations of the lift coefficient versus the angle of attack become more abrupt with decreasing curvature of the airfoil in the midchord region. This is caused by an instability of closely spaced local supersonic regions on the upper surface of the airfoil.


1995 ◽  
Vol 1 (3-4) ◽  
pp. 225-235 ◽  
Author(s):  
M. J. Braun ◽  
M. Dzodzo

The flow in a hydrostatic pocket is numerically simulated using a dimensionless formulation of the 2-D Navier-Stokes equations written in primitive variables, for a body fitted coordinates system, and applied through a collocated grid. In essence, we continue the work of Braun et al. 1993a, 1993b] and extend it to the study of the effects of the pocket geometric format on the flow pattern and pressure distribution. The model includes the coupling between the pocket flow and a finite length feedline flow, on one hand, and the pocket and its adjacent lands on the other hand. In this context we shall present, on a comparative basis, the flow and the pressure patterns at the runner surface for square, ramped-Rayleigh step, and arc of circle pockets. Geometrically all pockets have the same footprint, same lands length, and same capillary feedline. The numerical simulation uses the Reynolds number based on the lid(runner) velocity and the inlet jet strengthFas the dynamic similarity parameters. The study aims at establishing criteria for the optimization of the pocket geometry in the larger context of the performance of a hydrostatic bearing.


Sign in / Sign up

Export Citation Format

Share Document