EMBEDDINGS OF P(ω)/Fin INTO BOREL EQUIVALENCE RELATIONS BETWEEN ℓp AND ℓq

2015 ◽  
Vol 80 (3) ◽  
pp. 917-939 ◽  
Author(s):  
ZHI YIN

AbstractWe prove that, for 1 ≤ p < q < ∞, the partially ordered set P(ω)/Fin can be embedded into Borel equivalence relations between ℝω/ℓp and ℝω/ℓq. Since there is an antichain of size continuum in P(ω)/Fin, there are continuum many pairwise incomparable Borel equivalence relations between ℝω/ℓp and ℝω/ℓq.

1999 ◽  
Vol 64 (2) ◽  
pp. 551-574 ◽  
Author(s):  
Vladimir Kanovei

AbstractWe prove that if I is a partially ordered set in a countable transitive model of ZFC then can be extended by a generic sequence of reals ai, i ∈ I, such that is preserved and every ai is Sacks generic over [〈aj: j < i〉]. The structure of the degrees of -constructibility of reals in the extension is investigated.As applications of the methods involved, we define a cardinal invariant to distinguish product and iterated Sacks extensions, and give a short proof of a theorem (by Budinas) that in ω2-iterated Sacks extension of L the Burgess selection principle for analytic equivalence relations holds.


1981 ◽  
Vol 4 (3) ◽  
pp. 551-603
Author(s):  
Zbigniew Raś

This paper is the first of the three parts of work on the information retrieval systems proposed by Salton (see [24]). The system is defined by the notions of a partially ordered set of requests (A, ⩽), the set of objects X and a monotonic retrieval function U : A → 2X. Different conditions imposed on the set A and a function U make it possible to obtain various classes of information retrieval systems. We will investigate systems in which (A, ⩽) is a partially ordered set, a lattice, a pseudo-Boolean algebra and Boolean algebra. In my paper these systems are called partially ordered information retrieval systems (po-systems) lattice information retrieval systems (l-systems); pseudo-Boolean information retrieval systems (pB-systems) and Boolean information retrieval systems (B-systems). The first part concerns po-systems and 1-systems. The second part deals with pB-systems and B-systems. In the third part, systems with a partial access are investigated. The present part discusses the method for construction of a set of attributes. Problems connected with the selectivity and minimalization of a set of attributes are investigated. The characterization and the properties of a set of attributes are given.


1974 ◽  
Vol 17 (4) ◽  
pp. 406-413 ◽  
Author(s):  
Jürgen Schmidt

The main result of this paper is the theorem in the title. Only special cases of it seem to be known so far. As an application, we obtain a result on the unique extension of Galois connexions. As a matter of fact, it is only by the use of Galois connexions that we obtain the main result, in its present generality.


1972 ◽  
Vol 13 (4) ◽  
pp. 451-455 ◽  
Author(s):  
Stephen T. L. Choy

For a semigroup S let I(S) be the set of idempotents in S. A natural partial order of I(S) is defined by e ≦ f if ef = fe = e. An element e in I(S) is called a primitive idempotent if e is a minimal non-zero element of the partially ordered set (I(S), ≦). It is easy to see that an idempotent e in S is primitive if and only if, for any idempotent f in S, f = ef = fe implies f = e or f is the zero element of S. One may also easily verify that an idempotent e is primitive if and only if the only idempotents in eSe are e and the zero element. We let П(S) denote the set of primitive idempotent in S.


1994 ◽  
Vol 03 (02) ◽  
pp. 223-231
Author(s):  
TOMOYUKI YASUDA

A ribbon n-knot Kn is constructed by attaching m bands to m + 1n-spheres in the Euclidean (n + 2)-space. There are many way of attaching them; as a result, Kn has many presentations which are called ribbon presentations. In this note, we will induce a notion to classify ribbon presentations for ribbon n-knots of m-fusions (m ≥ 1, n ≥ 2), and show that such classes form a totally ordered set in the case of m = 2 and a partially ordered set in the case of m ≥ 1.


2018 ◽  
Vol 21 (4) ◽  
pp. 593-628 ◽  
Author(s):  
Cihan Okay

AbstractIn this paper, we study the homotopy type of the partially ordered set of left cosets of abelian subgroups in an extraspecial p-group. We prove that the universal cover of its nerve is homotopy equivalent to a wedge of r-spheres where {2r\geq 4} is the rank of its Frattini quotient. This determines the homotopy type of the universal cover of the classifying space of transitionally commutative bundles as introduced in [2].


1971 ◽  
Vol 23 (5) ◽  
pp. 866-874 ◽  
Author(s):  
Raymond Balbes

For a distributive lattice L, let denote the poset of all prime ideals of L together with ∅ and L. This paper is concerned with the following type of problem. Given a class of distributive lattices, characterize all posets P for which for some . Such a poset P will be called representable over. For example, if is the class of all relatively complemented distributive lattices, then P is representable over if and only if P is a totally unordered poset with 0, 1 adjoined. One of our main results is a complete characterization of those posets P which are representable over the class of distributive lattices which are generated by their meet irreducible elements. The problem of determining which posets P are representable over the class of all distributive lattices appears to be very difficult.


Sign in / Sign up

Export Citation Format

Share Document