scholarly journals NOTES ON EXTREMAL AND TAME VALUED FIELDS

2016 ◽  
Vol 81 (2) ◽  
pp. 400-416
Author(s):  
SYLVY ANSCOMBE ◽  
FRANZ-VIKTOR KUHLMANN

AbstractWe extend the characterization of extremal valued fields given in [2] to the missing case of valued fields of mixed characteristic with perfect residue field. This leads to a complete characterization of the tame valued fields that are extremal. The key to the proof is a model theoretic result about tame valued fields in mixed characteristic. Further, we prove that in an extremal valued field of finitep-degree, the images of all additive polynomials have the optimal approximation property. This fact can be used to improve the axiom system that is suggested in [8] for the elementary theory of Laurent series fields over finite fields. Finally we give examples that demonstrate the problems we are facing when we try to characterize the extremal valued fields with imperfect residue fields. To this end, we describe several ways of constructing extremal valued fields; in particular, we show that in every ℵ1saturated valued field the valuation is a composition of extremal valuations of rank 1.

Author(s):  
Franz-Viktor Kuhlmann

We prove that a valued field of positive characteristic [Formula: see text] that has only finitely many distinct Artin–Schreier extensions (which is a property of infinite NTP2 fields) is dense in its perfect hull. As a consequence, it is a deeply ramified field and has [Formula: see text]-divisible value group and perfect residue field. Further, we prove a partial analogue for valued fields of mixed characteristic and observe an open problem about 1-units in this setting. Finally, we fill a gap that occurred in a proof in an earlier paper in which we first introduced a classification of Artin–Schreier defect extensions.


2008 ◽  
Vol 08 (01) ◽  
pp. 1-22 ◽  
Author(s):  
DEIRDRE HASKELL ◽  
YOAV YAFFE

The purpose of this paper is to study an analogue of Hilbert's seventeenth problem for functions over a valued field which are integral definite on some definable set; that is, that map the given set into the valuation ring. We use model theory to exhibit a uniform method, on various theories of valued fields, for deriving an algebraic characterization of such functions. As part of this method we refine the concept of a function being integral at a point, and make it dependent on the relevant class of valued fields. We apply our framework to algebraically closed valued fields, model complete theories of difference and differential valued fields, and real closed valued fields.


2002 ◽  
Vol 45 (1) ◽  
pp. 219-227 ◽  
Author(s):  
Kamal Aghigh ◽  
Sudesh K. Khanduja

AbstractLet $v$ be a henselian valuation of a field $K$ with value group $G$, let $\bar{v}$ be the (unique) extension of $v$ to a fixed algebraic closure $\bar{K}$ of $K$ and let $(\tilde{K},\tilde{v})$ be a completion of $(K,v)$. For $\alpha\in\bar{K}\setminus K$, let $M(\alpha,K)$ denote the set $\{\bar{v}(\alpha-\beta):\beta\in\bar{K},\ [K(\beta):K] \lt [K(\alpha):K]\}$. It is known that $M(\alpha,K)$ has an upper bound in $\bar{G}$ if and only if $[K(\alpha):K]=[\tilde{K}(\alpha):\tilde{K}]$, and that the supremum of $M(\alpha,K)$, which is denoted by $\delta_{K}(\alpha)$ (usually referred to as the main invariant of $\alpha$), satisfies a principle similar to the Krasner principle. Moreover, each complete discrete rank 1 valued field $(K,v)$ has the property that $\delta_{K}(\alpha)\in M(\alpha,K)$ for every $\alpha\in\bar{K}\setminus K$. In this paper the authors give a characterization of all those henselian valued fields $(K,v)$ which have the property mentioned above.AMS 2000 Mathematics subject classification: Primary 12J10; 12J25; 13A18


2015 ◽  
Vol 80 (1) ◽  
pp. 85-99 ◽  
Author(s):  
FRANZISKA JAHNKE ◽  
JOCHEN KOENIGSMANN

AbstractIn this note we investigate the question when a henselian valued field carries a nontrivial ∅-definable henselian valuation (in the language of rings). This is clearly not possible when the field is either separably or real closed, and, by the work of Prestel and Ziegler, there are further examples of henselian valued fields which do not admit a ∅-definable nontrivial henselian valuation. We give conditions on the residue field which ensure the existence of a parameter-free definition. In particular, we show that a henselian valued field admits a nontrivial henselian ∅-definable valuation when the residue field is separably closed or sufficiently nonhenselian, or when the absolute Galois group of the (residue) field is nonuniversal.


1990 ◽  
Vol 55 (3) ◽  
pp. 1125-1129 ◽  
Author(s):  
Johan Pas

In [10] we introduced a new first order language for valued fields. This language has three sorts of variables, namely variables for elements of the valued field, variables for elements of the residue field and variables for elements of the value group. contains symbols for the standard field, residue field, and value group operations and a function symbol for the valuation. Essential in our language is a function symbol for an angular component map modulo P, which is a map from the field to the residue field (see Definition 1.2).For this language we proved a quantifier elimination theorem for Henselian valued fields of equicharacteristic zero which possess such an angular component map modulo P [10, Theorem 4.1]. In the first section of this paper we give some partial results on the existence of an angular component map modulo P on an arbitrary valued field.By applying the above quantifier elimination theorem to ultraproducts ΠQp/D, we obtained a quantifier elimination, in the language , for the p-adic field Qp; and this elimination is uniform for almost all primes p [10, Corollary 4.3]. In §2 we prove that our language is essentially stronger than the natural language for p-adic fields in the sense that the angular component map modulo P cannot be defined, uniformly for almost all p, in terms of the natural language for p-adic fields.


1993 ◽  
Vol 58 (3) ◽  
pp. 915-930 ◽  
Author(s):  
Rafel Farré

AbstractIn well-known papers ([A-K1], [A-K2], and [E]) J. Ax, S. Kochen, and J. Ershov prove a transfer theorem for henselian valued fields. Here we prove an analogue for henselian valued and ordered fields. The orders for which this result apply are the usual orders and also the higher level orders introduced by E. Becker in [Bl] and [B2]. With certain restrictions, two henselian valued and ordered fields are elementarily equivalent if and only if their value groups (with a little bit more structure) and their residually ordered residue fields (a henselian valued and ordered field induces in a natural way an order in its residue field) are elementarily equivalent. Similar results are proved for elementary embeddings and ∀-extensions (extensions where the structure is existentially closed).


Author(s):  
W. Govaerts

AbstractLet C(X, F) be the space of all continuous functions from the ultraregular compact Hausdorff space X into the separated locally K-convex space F; K is a complete, but not necessarily spherically complete, non-Archimedean valued field and C(X, F) is provided with the topology of uniform convergence on X We prove that C(X, F) is K-barrelled (respectively K-quasibarrelled) if and only if F is K-barrelled (respectively K-quasibarrelled) This is not true in the case of R or C-valued functions. No complete characterization of the K-bornological space C(X, F) is obtained, but our results are, nevertheless, slightly better than the Archimedean ones. Finally, we introduce a notion of K-ultrabornological spaces for K non-spherically complete and use it to study K-ultrabornological spaces C(X, F).


2020 ◽  
Vol 27 (03) ◽  
pp. 389-404
Author(s):  
Driss Bennis ◽  
Karim Mounirh

Let D be a tame central division algebra over a Henselian valued field E, [Formula: see text] be the residue division algebra of D, [Formula: see text] be the residue field of E, and n be a positive integer. We prove that Mn([Formula: see text]) has a strictly maximal subfield which is Galois (resp., abelian) over [Formula: see text] if and only if Mn(D) has a strictly maximal subfield K which is Galois (resp., abelian) and tame over E with ΓK ⊆ ΓD, where ΓK and ΓD are the value groups of K and D, respectively. This partially generalizes the result proved by Hanke et al. in 2016 for the case n = 1.


1992 ◽  
Vol 35 (3) ◽  
pp. 419-426 ◽  
Author(s):  
Sudesh K. Khanduja

For a valued field (K, v), let Kv denote the residue field of v and Gv its value group. One way of extending a valuation v defined on a field K to a simple transcendental extension K(x) is to choose any α in K and any μ in a totally ordered Abelian group containing Gv, and define a valuation w on K[x] by w(Σici(x – α)i) = mini (v(ci) + iμ). Clearly either Gv is a subgroup of finite index in Gw = Gv + ℤμ or Gw/Gv is not a torsion group. It can be easily shown that K(x)w is a simple transcendental extension of Kv in the former case. Conversely it is well known that for an algebraically closed field K with a valuation v, if w is an extension of v to K(x) such that either K(x)w is not algebraic over Kv or Gw/Gv is not a torsion group, then w is of the type described above. The present paper deals with the converse problem for any field K. It determines explicitly all such valuations w together with their residue fields and value groups.


2001 ◽  
Vol 66 (3) ◽  
pp. 1493-1503
Author(s):  
Ingo Brigandt

AbstractWe give an answer to the question as to whether quantifier elimination is possible in some infinite algebraic extensions of ℚp (‘infinite p-adic fields’) using a natural language extension. The present paper deals with those infinite p-adic fields which admit only tamely ramified algebraic extensions (so-called tame fields). In the case of tame fields whose residue fields satisfy Kaplansky's condition of having no extension of p-divisible degree quantifier elimination is possible when the language of valued fields is extended by the power predicates Pn introduced by Macintyre and, for the residue field, further predicates and constants. For tame infinite p-adic fields with algebraically closed residue fields an extension by Pn predicates is sufficient.


Sign in / Sign up

Export Citation Format

Share Document