scholarly journals Valued fields with finitely many defect extensions of prime degree

Author(s):  
Franz-Viktor Kuhlmann

We prove that a valued field of positive characteristic [Formula: see text] that has only finitely many distinct Artin–Schreier extensions (which is a property of infinite NTP2 fields) is dense in its perfect hull. As a consequence, it is a deeply ramified field and has [Formula: see text]-divisible value group and perfect residue field. Further, we prove a partial analogue for valued fields of mixed characteristic and observe an open problem about 1-units in this setting. Finally, we fill a gap that occurred in a proof in an earlier paper in which we first introduced a classification of Artin–Schreier defect extensions.

2016 ◽  
Vol 81 (2) ◽  
pp. 400-416
Author(s):  
SYLVY ANSCOMBE ◽  
FRANZ-VIKTOR KUHLMANN

AbstractWe extend the characterization of extremal valued fields given in [2] to the missing case of valued fields of mixed characteristic with perfect residue field. This leads to a complete characterization of the tame valued fields that are extremal. The key to the proof is a model theoretic result about tame valued fields in mixed characteristic. Further, we prove that in an extremal valued field of finitep-degree, the images of all additive polynomials have the optimal approximation property. This fact can be used to improve the axiom system that is suggested in [8] for the elementary theory of Laurent series fields over finite fields. Finally we give examples that demonstrate the problems we are facing when we try to characterize the extremal valued fields with imperfect residue fields. To this end, we describe several ways of constructing extremal valued fields; in particular, we show that in every ℵ1saturated valued field the valuation is a composition of extremal valuations of rank 1.


2015 ◽  
Vol 80 (1) ◽  
pp. 85-99 ◽  
Author(s):  
FRANZISKA JAHNKE ◽  
JOCHEN KOENIGSMANN

AbstractIn this note we investigate the question when a henselian valued field carries a nontrivial ∅-definable henselian valuation (in the language of rings). This is clearly not possible when the field is either separably or real closed, and, by the work of Prestel and Ziegler, there are further examples of henselian valued fields which do not admit a ∅-definable nontrivial henselian valuation. We give conditions on the residue field which ensure the existence of a parameter-free definition. In particular, we show that a henselian valued field admits a nontrivial henselian ∅-definable valuation when the residue field is separably closed or sufficiently nonhenselian, or when the absolute Galois group of the (residue) field is nonuniversal.


1990 ◽  
Vol 55 (3) ◽  
pp. 1125-1129 ◽  
Author(s):  
Johan Pas

In [10] we introduced a new first order language for valued fields. This language has three sorts of variables, namely variables for elements of the valued field, variables for elements of the residue field and variables for elements of the value group. contains symbols for the standard field, residue field, and value group operations and a function symbol for the valuation. Essential in our language is a function symbol for an angular component map modulo P, which is a map from the field to the residue field (see Definition 1.2).For this language we proved a quantifier elimination theorem for Henselian valued fields of equicharacteristic zero which possess such an angular component map modulo P [10, Theorem 4.1]. In the first section of this paper we give some partial results on the existence of an angular component map modulo P on an arbitrary valued field.By applying the above quantifier elimination theorem to ultraproducts ΠQp/D, we obtained a quantifier elimination, in the language , for the p-adic field Qp; and this elimination is uniform for almost all primes p [10, Corollary 4.3]. In §2 we prove that our language is essentially stronger than the natural language for p-adic fields in the sense that the angular component map modulo P cannot be defined, uniformly for almost all p, in terms of the natural language for p-adic fields.


2014 ◽  
Vol 22 (2) ◽  
pp. 5-20
Author(s):  
Deeba Afzal ◽  
Muhammad Ahsan Binyamin ◽  
Faira Kanwal Janjua

AbstractThe aim of the article is to describe the classification of simple isolated hypersurface sin- gularities over a field of positive characteristic by certain invariants without computing the normal form. We also give a description of the algorithms to compute the classification which we have implemented in the Singular libraries classifyCeq.lib and classifyReq.lib. 1 Int


2020 ◽  
Vol 27 (03) ◽  
pp. 389-404
Author(s):  
Driss Bennis ◽  
Karim Mounirh

Let D be a tame central division algebra over a Henselian valued field E, [Formula: see text] be the residue division algebra of D, [Formula: see text] be the residue field of E, and n be a positive integer. We prove that Mn([Formula: see text]) has a strictly maximal subfield which is Galois (resp., abelian) over [Formula: see text] if and only if Mn(D) has a strictly maximal subfield K which is Galois (resp., abelian) and tame over E with ΓK ⊆ ΓD, where ΓK and ΓD are the value groups of K and D, respectively. This partially generalizes the result proved by Hanke et al. in 2016 for the case n = 1.


2001 ◽  
Vol 7 (2) ◽  
pp. 262-269 ◽  
Author(s):  
Raf Cluckers ◽  
Deirdre Haskell

AbstractWe prove the triviality of the Grothendieck ring of a ℤ-valued field K under slight conditions on the logical language and on K. We construct a definable bijection from the plane K2 to itself minus a point. When we specialize to local fields with finite residue field, we construct a definable bijection from the valuation ring to itself minus a point.


2021 ◽  
Vol 27 (2) ◽  
pp. 222-223
Author(s):  
Pierre Touchard

AbstractIn this thesis, we study transfer principles in the context of certain Henselian valued fields, namely Henselian valued fields of equicharacteristic $0$ , algebraically closed valued fields, algebraically maximal Kaplansky valued fields, and unramified mixed characteristic Henselian valued fields with perfect residue field. First, we compute the burden of such a valued field in terms of the burden of its value group and its residue field. The burden is a cardinal related to the model theoretic complexity and a notion of dimension associated to $\text {NTP}_2$ theories. We show, for instance, that the Hahn field $\mathbb {F}_p^{\text {alg}}((\mathbb {Z}[1/p]))$ is inp-minimal (of burden 1), and that the ring of Witt vectors $W(\mathbb {F}_p^{\text {alg}})$ over $\mathbb {F}_p^{\text {alg}}$ is not strong (of burden $\omega $ ). This result extends previous work by Chernikov and Simon and realizes an important step toward the classification of Henselian valued fields of finite burden. Second, we show a transfer principle for the property that all types realized in a given elementary extension are definable. It can be written as follows: a valued field as above is stably embedded in an elementary extension if and only if its value group is stably embedded in the corresponding extension of value groups, its residue field is stably embedded in the corresponding extension of residue fields, and the extension of valued fields satisfies a certain algebraic condition. We show, for instance, that all types over the power series field $\mathbb {R}((t))$ are definable. Similarly, all types over the quotient field of $W(\mathbb {F}_p^{\text {alg}})$ are definable. This extends previous work of Cubides and Delon and of Cubides and Ye.These distinct results use a common approach, which has been developed recently. It consists of establishing first a reduction to an intermediate structure called the leading term structure, or $\operatorname {\mathrm {RV}}$ -sort, and then of reducing to the value group and residue field. This leads us to develop similar reduction principles in the context of pure short exact sequences of abelian groups.Abstract prepared by Pierre Touchard.E-mail: [email protected]: https://miami.uni-muenster.de/Record/a612cf73-0a2f-42c4-b1e4-7d28934138a9


2019 ◽  
Vol 19 (11) ◽  
pp. 2050217 ◽  
Author(s):  
Yong Hu

Let [Formula: see text] be a complete discrete valuation field whose residue field [Formula: see text] is a global field of positive characteristic [Formula: see text]. Let [Formula: see text] be a central division [Formula: see text]-algebra of [Formula: see text]-power degree. We prove that the subgroup of [Formula: see text] consisting of reduced norms of [Formula: see text] is exactly the kernel of the cup product map [Formula: see text], if either [Formula: see text] is tamely ramified or of period [Formula: see text]. This gives a [Formula: see text]-torsion counterpart of a recent theorem of Parimala, Preeti and Suresh, where the same result is proved for division algebras of prime-to-[Formula: see text] degree.


2021 ◽  
Vol 9 ◽  
Author(s):  
Artem Chernikov ◽  
Nadja Hempel

Abstract We continue the study of n-dependent groups, fields and related structures, largely motivated by the conjecture that every n-dependent field is dependent. We provide evidence toward this conjecture by showing that every infinite n-dependent valued field of positive characteristic is henselian, obtaining a variant of Shelah’s Henselianity Conjecture in this case and generalizing a recent result of Johnson for dependent fields. Additionally, we prove a result on intersections of type-definable connected components over generic sets of parameters in n-dependent groups, generalizing Shelah’s absoluteness of $G^{00}$ in dependent theories and relative absoluteness of $G^{00}$ in $2$ -dependent theories. In an effort to clarify the scope of this conjecture, we provide new examples of strictly $2$ -dependent fields with additional structure, showing that Granger’s examples of non-degenerate bilinear forms over dependent fields are $2$ -dependent. Along the way, we obtain some purely model-theoretic results of independent interest: we show that n-dependence is witnessed by formulas with all but one variable singletons; provide a type-counting criterion for $2$ -dependence and use it to deduce $2$ -dependence for compositions of dependent relations with arbitrary binary functions (the Composition Lemma); and show that an expansion of a geometric theory T by a generic predicate is dependent if and only if it is n-dependent for some n, if and only if the algebraic closure in T is disintegrated. An appendix by Martin Bays provides an explicit isomorphism in the Kaplan-Scanlon-Wagner theorem.


Sign in / Sign up

Export Citation Format

Share Document