The aim of the study was to assess possible variations in superovulatory yields due to different FSH treatments at 2 times of the year. Superovulation and embryo recovery were performed during the breeding (n = 63) andnonbreeding (n = 46) seasons in Merino ewes located at 41°S latitude. Animals were kept under the same conditions, housed outdoors in a sheltered and covered pen, and were fed a liveweight maintenance ration. All animals received 60-mg medroxyprogesterone acetate intravaginal sponges (Progespon®, Syntex, Buenos Aires, Argentina) for 14 days. Ewes were then randomly assigned to 2 different superovulatory treatments: classic (n = 74) and one shot (n = 35) in both seasons. Classic superovulatory treatment consisted of 7 decreasing doses (2 × 48 mg, 2 × 24 mg, 2 × 20 mg, and1 × 16 mg NIH-FSH-P1)ofFSH (Folltropin®-V, Bioniche, Belleville, Ontario, Canada), administered twice daily from 48 h before to 24 h after pessary removal. A dose of eCG (300 IU; Novormon®, Syntex) was administered at progestagen removal. One shot superovulatory treatment consisted of a single dose of FSH (70 mg NIH-FSH-P1) plus 300 UI of eCG injected at pessary withdrawal. Embryo donors were inseminated by laparoscopy with frozen-thawed semen (100 × 106 spz) 12 h after the onset of estrus. Surgical embryo recovery was done on Day 7 after sponge withdrawal and embryos were graded for quality according to morphology (Grade 1 = excellent or good; Grade 2 = fair; Grade 3 = poor; and Grade 4 = dead or degenerated; IETS 1998). A 2 × 2 factorial ANOVA was used to test the main effects (season and superovulatory treatment) and interactions. There were no significant differences in the proportion of responding ewes (>3 corpora lutea), ovulation rate, and recovered Grades 1 to 2 embryos between the breeding and nonbreeding season (Table 1; P > 0.05). However, number of recovered ova/embryos and ova/embryo recovery rate were higher during the breeding season compared with the nonbreeding season, whereas the percentage of nonfertilized ova was lower in the breeding season than in the nonbreeding season (P < 0.05). Analysis of data comparing superovulatory treatments showed that the proportion of responding ewes, ovulation rate, recovered embryos, and recovered Grades 1 to 2 embryos were lower for the one shot treatment than for the classic treatment (P < 0.05). Embryo recovery rate and nonfertilization rate did not differ between treatments (P > 0.05). It was concluded that there was an increase in the number of total recovered ova/embryos during the breeding season compared with the nonbreeding season, although the number of recovered good-quality embryos was not affected. The use of multiple FSH injections produced a higher number of total recovered and viable embryos in Merino sheep than the one shot superovulatory treatment.
Table 1.Embryo yields in ewes submitted to superovulation