-SPHERICAL FUNCTIONS ON ABELIAN SEMIGROUPS

2017 ◽  
Vol 96 (3) ◽  
pp. 479-486 ◽  
Author(s):  
RADOSŁAW ŁUKASIK

We present the form of the solutions $f:S\rightarrow \mathbb{C}$ of the functional equation $$\begin{eqnarray}\mathop{\sum }_{\unicode[STIX]{x1D706}\in K}f(x+\unicode[STIX]{x1D706}y)=|K|f(x)f(y)\quad \text{for }x,y\in S,\end{eqnarray}$$ where $f$ satisfies the condition $f(\sum _{\unicode[STIX]{x1D706}\in K}\unicode[STIX]{x1D706}x)\neq 0$ for all $x\in S$, $(S,+)$ is an abelian semigroup and $K$ is a subgroup of the automorphism group of $S$.

2006 ◽  
Vol 71 (1) ◽  
pp. 203-216 ◽  
Author(s):  
Ermek S. Nurkhaidarov

In this paper we study the automorphism groups of countable arithmetically saturated models of Peano Arithmetic. The automorphism groups of such structures form a rich class of permutation groups. When studying the automorphism group of a model, one is interested to what extent a model is recoverable from its automorphism group. Kossak-Schmerl [12] show that if M is a countable, arithmetically saturated model of Peano Arithmetic, then Aut(M) codes SSy(M). Using that result they prove:Let M1. M2 be countable arithmetically saturated models of Peano Arithmetic such that Aut(M1) ≅ Aut(M2). Then SSy(M1) = SSy(M2).We show that if M is a countable arithmetically saturated of Peano Arithmetic, then Aut(M) can recognize if some maximal open subgroup is a stabilizer of a nonstandard element, which is smaller than any nonstandard definable element. That fact is used to show the main theorem:Let M1, M2be countable arithmetically saturated models of Peano Arithmetic such that Aut(M1) ≅ Aut(M2). Then for every n < ωHere RT2n is Infinite Ramsey's Theorem stating that every 2-coloring of [ω]n has an infinite homogeneous set. Theorem 0.2 shows that for models of a false arithmetic the converse of Kossak-Schmerl Theorem 0.1 is not true. Using the results of Reverse Mathematics we obtain the following corollary:There exist four countable arithmetically saturated models of Peano Arithmetic such that they have the same standard system but their automorphism groups are pairwise non-isomorphic.


1988 ◽  
Vol 30 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Hugh L. Montgomery

Let be a positive definite binary quadratic form with real coefficients and discriminant b2 − 4ac = −1.Among such forms, let . The Epstein zeta function of f is denned to beRankin [7], Cassels [1], Ennola [5], and Diananda [4] between them proved that for every real s > 0,We prove a corresponding result for theta functions. For real α > 0, letThis function satisfies the functional equation(This may be proved by using the formula (4) below, and then twice applying the identity (8).)


2018 ◽  
Vol 97 (3) ◽  
pp. 459-470 ◽  
Author(s):  
IZ-IDDINE EL-FASSI ◽  
JANUSZ BRZDĘK

Motivated by the notion of Ulam stability, we investigate some inequalities connected with the functional equation $$\begin{eqnarray}f(xy)+f(x\unicode[STIX]{x1D70E}(y))=2f(x)+h(y),\quad x,y\in G,\end{eqnarray}$$ for functions $f$ and $h$ mapping a semigroup $(G,\cdot )$ into a commutative semigroup $(E,+)$, where the map $\unicode[STIX]{x1D70E}:G\rightarrow G$ is an endomorphism of $G$ with $\unicode[STIX]{x1D70E}(\unicode[STIX]{x1D70E}(x))=x$ for all $x\in G$. We derive from these results some characterisations of inner product spaces. We also obtain a description of solutions to the equation and hyperstability results for the $\unicode[STIX]{x1D70E}$-quadratic and $\unicode[STIX]{x1D70E}$-Drygas equations.


1953 ◽  
Vol 5 ◽  
pp. 101-103 ◽  
Author(s):  
G. M. Ewing ◽  
W. R. Utz

In this note the authors find all continuous real functions defined on the real axis and such that for an integer n > 2, and for each x,


1969 ◽  
Vol 12 (6) ◽  
pp. 837-846 ◽  
Author(s):  
John A. Baker

Consider the functional equation(1)assumed valid for all real x, y and h. Notice that (1) can be written(2)a difference analogue of the wave equation, if we interpret etc., (i. e. symmetric h differences), and that (1) has an interesting geometric interpretation. The continuous solutions of (1) were found by Sakovič [5].


1973 ◽  
Vol 16 (3) ◽  
pp. 443-445
Author(s):  
Shigeru Haruki

The following square functional equation(1)was considered (for example [l]-[9]) previously.


1985 ◽  
Vol 17 (01) ◽  
pp. 53-66
Author(s):  
K. B. Athreya

Let F(·) be a c.d.f. on [0,∞), f(s) = ∑∞ 0 pjsi a p.g.f. with p 0 = 0, &lt; 1 &lt; m = Σj p j &lt; ∞ and 1 &lt; ρ &lt;∞. For the functional equation for a c.d.f. H(·) on [0,∞] we establish that if 1 – F(x) = O(x –θ ) for some θ &gt; α =(log m)/(log p) there exists a unique solution H(·) to (∗) in the class C of c.d.f.’s satisfying 1 – H(x) = o(x –α ). We give a probabilistic construction of this solution via branching random walks with discounting. We also show non-uniqueness if the condition 1 – H(x) = o(x –α ) is relaxed.


1988 ◽  
Vol 38 (3) ◽  
pp. 351-356 ◽  
Author(s):  
Peter L. Walker

We consider the Abelian functional equationwhere φ is a given entire function and g is to be found. The inverse function f = g−1 (if one exists) must satisfyWe show that for a wide class of entire functions, which includes φ(z) = ez − 1, the latter equation has a non-constant entire solution.


1967 ◽  
Vol 10 (4) ◽  
pp. 503-505 ◽  
Author(s):  
John D. Dixon

To each tournament Tn with n nodes n there corresponds the automorphism group G(Tn) consisting n of all dominance preserving permutations of the set of nodes. In a recent paper [3], Myron Goldberg and J. W. Moon consider the maximum order g(n) which the group of a tournament with n nodes may have. Among other results they prove that12


1985 ◽  
Vol 97 (2) ◽  
pp. 261-278 ◽  
Author(s):  
P. J. McCarthy ◽  
M. Crampin ◽  
W. Stephenson

AbstractThe requirement that the graph of a function be invariant under a linear map is equivalent to a functional equation of f. For area preserving maps M(det (M) = 1), the functional equation is equivalent to an (easily solved) linear one, or to a quadratic one of the formfor all Here 2C = Trace (M). It is shown that (Q) admits continuous solutions ⇔ M has real eigenvalues ⇔ (Q) has linear solutions f(x) = λx ⇔ |C| ≥ 1. For |c| = 1 or C < – 1, (Q) only admits a few simple solutions. For C > 1, (Q) admits a rich supply of continuous solutions. These are parametrised by an arbitrary function, and described in the sense that a construction is given for the graphs of the functions which solve (Q).


Sign in / Sign up

Export Citation Format

Share Document