NOTE ON LEHMER–PIERCE SEQUENCES WITH THE SAME PRIME DIVISORS

2017 ◽  
Vol 97 (1) ◽  
pp. 11-14
Author(s):  
M. SKAŁBA

Let $a_{1},a_{2},\ldots ,a_{m}$ and $b_{1},b_{2},\ldots ,b_{l}$ be two sequences of pairwise distinct positive integers greater than $1$. Assume also that none of the above numbers is a perfect power. If for each positive integer $n$ and prime number $p$ the number $\prod _{i=1}^{m}(1-a_{i}^{n})$ is divisible by $p$ if and only if the number $\prod _{j=1}^{l}(1-b_{j}^{n})$ is divisible by $p$, then $m=l$ and $\{a_{1},a_{2},\ldots ,a_{m}\}=\{b_{1},b_{2},\ldots ,b_{l}\}$.

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1414
Author(s):  
Vicente Jara-Vera ◽  
Carmen Sánchez-Ávila

In this paper, we give a new proof of the divergence of the sum of the reciprocals of primes using the number of distinct prime divisors of positive integer n, and the placement of lattice points on a hyperbola given by n=pr with prime number p. We also offer both a new expression of the average sum of the number of distinct prime divisors, and a new proof of its divergence, which is very intriguing by its elementary approach.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Long Chen ◽  
Kaimin Cheng ◽  
Tingting Wang

Let p be an odd prime number and n be a positive integer. Let vpn, N∗, and Q+ denote the p-adic valuation of the integer n, the set of positive integers, and the set of positive rational numbers, respectively. In this paper, we introduce an arithmetic function fp:N∗⟶Q+ defined by fpn≔n/pvpn1−vpn for any positive integer n. We show several interesting arithmetic properties about that function and then use them to establish some curious results involving the p-adic valuation. Some of these results extend Farhi’s results from the case of even prime to that of odd prime.


Author(s):  
Jin-Hui Fang

A positive integer [Formula: see text] is called weakly prime-additive if [Formula: see text] has at least two distinct prime divisors and there exist distinct prime divisors [Formula: see text] of [Formula: see text] and positive integers [Formula: see text] such that [Formula: see text]. It is easy to see that [Formula: see text]. In this paper, intrigued by De Koninck and Luca’s work, we further determine all weakly prime-additive numbers [Formula: see text] such that [Formula: see text], where [Formula: see text] are distinct odd prime factors of [Formula: see text].


2011 ◽  
Vol 54 (3) ◽  
pp. 599-612 ◽  
Author(s):  
Yann Bugeaud ◽  
Natalia Budarina ◽  
Detta Dickinson ◽  
Hugh O'Donnell

AbstractLet p be a prime number. For a positive integer n and a p-adic number ξ, let λn(ξ) denote the supremum of the real numbers λ such that there are arbitrarily large positive integers q such that ‖qξ‖p,‖qξ2‖p,…,‖qξn‖p are all less than q−λ−1. Here, ‖x‖p denotes the infimum of |x−n|p as n runs through the integers. We study the set of values taken by the function λn.


Author(s):  
Ruiqin Fu ◽  
Hai Yang

Let [Formula: see text] be fixed positive integers such that [Formula: see text] is not a perfect square and [Formula: see text] is squarefree, and let [Formula: see text] denote the number of distinct prime divisors of [Formula: see text]. Let [Formula: see text] denote the least solution of Pell equation [Formula: see text]. Further, for any positive integer [Formula: see text], let [Formula: see text] and [Formula: see text], where [Formula: see text] and [Formula: see text]. In this paper, using the basic properties of Pell equations and some known results on binary quartic Diophantine equations, a necessary and sufficient condition for the system of equations [Formula: see text] and [Formula: see text] to have positive integer solutions [Formula: see text] is obtained. By this result, we prove that if [Formula: see text] has a positive integer solution [Formula: see text] for [Formula: see text] or [Formula: see text] according to [Formula: see text] or not, then [Formula: see text] and [Formula: see text], where [Formula: see text] is a positive integer, [Formula: see text] or [Formula: see text] and [Formula: see text] or [Formula: see text] according to [Formula: see text] or not, [Formula: see text] is the integer part of [Formula: see text], except for [Formula: see text]


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 288
Author(s):  
Atsushi Yamagami ◽  
Kazuki Taniguchi

The Pascal’s triangle is generalized to “the k-Pascal’s triangle” with any integer k ≥ 2 . Let p be any prime number. In this article, we prove that for any positive integers n and e, the n-th row in the p e -Pascal’s triangle consists of integers which are congruent to 1 modulo p if and only if n is of the form p e m − 1 p e − 1 with some integer m ≥ 1 . This is a generalization of a Lucas’ result asserting that the n-th row in the (2-)Pascal’s triangle consists of odd integers if and only if n is a Mersenne number. As an application, we then see that there exists no row in the 4-Pascal’s triangle consisting of integers which are congruent to 1 modulo 4 except the first row. In this application, we use the congruence ( x + 1 ) p e ≡ ( x p + 1 ) p e − 1 ( mod p e ) of binomial expansions which we could prove for any prime number p and any positive integer e. We think that this article is fit for the Special Issue “Number Theory and Symmetry,” since we prove a symmetric property on the 4-Pascal’s triangle by means of a number-theoretical property of binomial expansions.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1813
Author(s):  
S. Subburam ◽  
Lewis Nkenyereye ◽  
N. Anbazhagan ◽  
S. Amutha ◽  
M. Kameswari ◽  
...  

Consider the Diophantine equation yn=x+x(x+1)+⋯+x(x+1)⋯(x+k), where x, y, n, and k are integers. In 2016, a research article, entitled – ’power values of sums of products of consecutive integers’, primarily proved the inequality n= 19,736 to obtain all solutions (x,y,n) of the equation for the fixed positive integers k≤10. In this paper, we improve the bound as n≤ 10,000 for the same case k≤10, and for any fixed general positive integer k, we give an upper bound depending only on k for n.


2020 ◽  
Vol 18 (1) ◽  
pp. 907-915
Author(s):  
Zhongbi Wang ◽  
Chao Qin ◽  
Heng Lv ◽  
Yanxiong Yan ◽  
Guiyun Chen

Abstract For a positive integer n and a prime p, let {n}_{p} denote the p-part of n. Let G be a group, \text{cd}(G) the set of all irreducible character degrees of G , \rho (G) the set of all prime divisors of integers in \text{cd}(G) , V(G)=\left\{{p}^{{e}_{p}(G)}|p\in \rho (G)\right\} , where {p}^{{e}_{p}(G)}=\hspace{.25em}\max \hspace{.25em}\{\chi {(1)}_{p}|\chi \in \text{Irr}(G)\}. In this article, it is proved that G\cong {L}_{2}({p}^{2}) if and only if |G|=|{L}_{2}({p}^{2})| and V(G)=V({L}_{2}({p}^{2})) .


2018 ◽  
Vol 68 (5) ◽  
pp. 975-980
Author(s):  
Zhongyan Shen ◽  
Tianxin Cai

Abstract In 2014, Wang and Cai established the following harmonic congruence for any odd prime p and positive integer r, $$\sum_{\begin{subarray}{c}i+j+k=p^{r}\\ i,j,k\in\mathcal{P}_{p}\end{subarray}}\frac{1}{ijk}\equiv-2p^{r-1}B_{p-3} \quad\quad(\text{mod} \,\, {p^{r}}),$$ where $ \mathcal{P}_{n} $ denote the set of positive integers which are prime to n. In this note, we obtain the congruences for distinct odd primes p, q and positive integers α, β, $$ \sum_{\begin{subarray}{c}i+j+k=p^{\alpha}q^{\beta}\\ i,j,k\in\mathcal{P}_{2pq}\end{subarray}}\frac{1}{ijk}\equiv\frac{7}{8}\left(2-% q\right)\left(1-\frac{1}{q^{3}}\right)p^{\alpha-1}q^{\beta-1}B_{p-3}\pmod{p^{% \alpha}} $$ and $$ \sum_{\begin{subarray}{c}i+j+k=p^{\alpha}q^{\beta}\\ i,j,k\in\mathcal{P}_{pq}\end{subarray}}\frac{(-1)^{i}}{ijk}\equiv\frac{1}{2}% \left(q-2\right)\left(1-\frac{1}{q^{3}}\right)p^{\alpha-1}q^{\beta-1}B_{p-3}% \pmod{p^{\alpha}}. $$


Author(s):  
ALEXANDER GRISHKOV ◽  
LIUDMILA SABININA ◽  
EFIM ZELMANOV

Abstract We prove that for positive integers $m \geq 1, n \geq 1$ and a prime number $p \neq 2,3$ there are finitely many finite m-generated Moufang loops of exponent $p^n$ .


Sign in / Sign up

Export Citation Format

Share Document