Influence of selected plant amines on probing behaviour of bird cherry-oat aphid (Rhopalosiphum padi L.)

2016 ◽  
Vol 106 (3) ◽  
pp. 368-377 ◽  
Author(s):  
C. Sempruch ◽  
S. Goławska ◽  
P. Osiński ◽  
B. Leszczyński ◽  
P. Czerniewicz ◽  
...  

AbstractThe study aimed to quantify the influence of common plant polyamines and tyramine on probing behaviour in the bird cherry-oat aphid (Rhopalosiphum padi L.). Electrical penetration graphs (DC) were used to monitor the probing and feeding behaviour of R. padi exposed to the amines agmatine, cadaverine, putrescine, spermidine, spermine and tyramine. The study results showed that the analyzed amines tended to shorten the stylet activity of aphids in the gels (as indicated by the g-C pattern), prolong the duration of non-probing behaviour (g-np pattern) and decrease salivation into the gels (g-E1pattern) and ingestion from the gels (g-G pattern). The 10 mM concentration of the studied amines, especially cadaverine, reduced or completely inhibited aphid ingestion. The obtained results demonstrate that plant amines participate in plant defence responses to R. padi through disturbance of its probing behaviour and the intensity of such effects is concentration dependent.

1994 ◽  
Vol 5 (4) ◽  
pp. 535-542 ◽  
Author(s):  
Sylvie Pouteau ◽  
Marie-Angele Grandbastien ◽  
Martine Boccara

Author(s):  
Mara Quaglia ◽  
Marika Bocchini ◽  
Benedetta Orfei ◽  
Roberto D’Amato ◽  
Franco Famiani ◽  
...  

AbstractThe purpose of this study was to determine whether zinc phosphate treatments of tomato plants (Solanum lycopersicum L.) can attenuate bacterial speck disease severity through reduction of Pseudomonas syringae pv. tomato (Pst) growth in planta and induce morphological and biochemical plant defence responses. Tomato plants were treated with 10 ppm (25.90 µM) zinc phosphate and then spray inoculated with strain DAPP-PG 215, race 0 of Pst. Disease symptoms were recorded as chlorosis and/or necrosis per leaf (%) and as numbers of necrotic spots. Soil treatments with zinc phosphate protected susceptible tomato plants against Pst, with reductions in both disease severity and pathogen growth in planta. The reduction of Pst growth in planta combined with significantly higher zinc levels in zinc-phosphate-treated plants indicated direct antimicrobial toxicity of this microelement, as also confirmed by in vitro assays. Morphological (i.e. callose apposition) and biochemical (i.e., expression of salicylic-acid-dependent pathogenesis-related protein PR1b1 gene) defence responses were induced by the zinc phosphate treatment, as demonstrated by histochemical and qPCR analyses, respectively. In conclusion, soil treatments with zinc phosphate can protect tomato plants against Pst attacks through direct antimicrobial activity and induction of morphological and biochemical plant defence responses.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marisa Maia ◽  
António E. N. Ferreira ◽  
Rui Nascimento ◽  
Filipa Monteiro ◽  
Francisco Traquete ◽  
...  

Abstract Vitis vinifera, one of the most cultivated fruit crops, is susceptible to several diseases particularly caused by fungus and oomycete pathogens. In contrast, other Vitis species (American, Asian) display different degrees of tolerance/resistance to these pathogens, being widely used in breeding programs to introgress resistance traits in elite V. vinifera cultivars. Secondary metabolites are important players in plant defence responses. Therefore, the characterization of the metabolic profiles associated with disease resistance and susceptibility traits in grapevine is a promising approach to identify trait-related biomarkers. In this work, the leaf metabolic composition of eleven Vitis genotypes was analysed using an untargeted metabolomics approach. A total of 190 putative metabolites were found to discriminate resistant/partial resistant from susceptible genotypes. The biological relevance of discriminative compounds was assessed by pathway analysis. Several compounds were selected as promising biomarkers and the expression of genes coding for enzymes associated with their metabolic pathways was analysed. Reference genes for these grapevine genotypes were established for normalisation of candidate gene expression. The leucoanthocyanidin reductase 2 gene (LAR2) presented a significant increase of expression in susceptible genotypes, in accordance with catechin accumulation in this analysis group. Up to our knowledge this is the first time that metabolic constitutive biomarkers are proposed, opening new insights into plant selection on breeding programs.


2014 ◽  
Vol 12 (S1) ◽  
pp. S121-S124
Author(s):  
Soon Il Kwon ◽  
D. J. Hwang

VQ-domain proteins are known to interact with WRKY transcription factors and have been reported to be involved in plant defence responses to environmental stresses in Arabidopsis. Thus, elucidation of the defence mechanisms during the interaction of VQ-domain proteins and WRKY transcription factors could provide useful insights into the regulation of VQ-domain protein-mediated WRKY transcription factors. As the focus of this review, we summarize the genomic analysis of the VQ-domain proteins as one of the WRKY-interacting proteins and their biological effects during plant stress conditions in Arabidopsis and rice.


2005 ◽  
Vol 43 (10-11) ◽  
pp. 997-1005 ◽  
Author(s):  
Peer M. Schenk ◽  
Kemal Kazan ◽  
Anca G. Rusu ◽  
John M. Manners ◽  
Donald J. Maclean

2019 ◽  
Vol 56 (No. 1) ◽  
pp. 1-8
Author(s):  
Martina Janků ◽  
Lucie Činčalová ◽  
Lenka Luhová ◽  
Jan Lochman ◽  
Marek Petřivalský

Successful plant defence responses to pathogen challenges are based on fast and specific pathogen recognition and plant reaction mechanisms. Elicitins, proteinaceous elicitors secreted by the Phytophthora and Pythium species, were first described in Phytophthora culture filtrates as proteins able to induce a hypersensitive response (HR) and resistance in tobacco at low concentrations. Later, they were classified as microbial-associated molecular patterns (MAMPs) able to induce defences in a variety of plant species. In this review, we present a comprehensive summary of the actual knowledge on the representative elicitins and their structure, perception and activation of plant signalling pathways. The current research of elicitins has been focused on a detailed understanding of the molecular mechanisms of the elicitin recognition by plant cells. Moreover, the possibility of elicitin involvement in the establishment and enhancement of plant host resistance to a broad spectrum of pathogens has been intensively studied.


2008 ◽  
Vol 69 (4) ◽  
pp. 473-488 ◽  
Author(s):  
Rajendra Bari ◽  
Jonathan D. G. Jones

Sign in / Sign up

Export Citation Format

Share Document