plant host
Recently Published Documents


TOTAL DOCUMENTS

698
(FIVE YEARS 291)

H-INDEX

54
(FIVE YEARS 10)

2023 ◽  
Vol 83 ◽  
Author(s):  
F. L. Xu ◽  
Y. J. Jiang ◽  
M. F. Yang ◽  
W. Da ◽  
X. W. Yang ◽  
...  

Abstract Except for a few stick insects that are economically valuable, most species be considered to be forest pests, so it is extremely important to obtain plant host-use information of more stick insects. In this paper, the plant hosts of three species of stick insects were recorded for the first time. We also discovered these stick insects can feed upon the flowers or leaves of plants. Lopaphus unidentatus (Chen & He, 1995) (Phasmida: Lonchodidae) attacked Hypericum choisianum Wall. ex N. Robson, 1973 (Hypericaceae), Leurophasma dolichocercum Bi, 1995 (Phasmida: Aschiphasmatidae) attacked Antenoron filiforme (Thunb.) Roberty & Vautier, 1964 (Polygonaceae) and Megalophasma granulatum Bi, 1995 (Phasmida: Lonchodidae) attacked Debregeasia orientalis C. J. Chen, 1991 (Urticaceae). Finally, we were lucky enough to also obtain photographs of them mating and feeding.


2022 ◽  
Author(s):  
Agustina De Francesco ◽  
Amelia H. Lovelace ◽  
Dipan Shaw ◽  
Min Qiu ◽  
Yuanchao Wang ◽  
...  

‘Candidatus Liberibacter asiaticus’ (Las) is an emergent bacterial pathogen that is associated with the devastating citrus huanglongbing (HLB). Vectored by the Asian citrus psyllid, Las colonizes the phloem tissue of citrus, causing severe damage to infected trees. So far, cultivating pure Las culture in axenic media has not been successful, and dual-transcriptome analyses aiming to profile gene expression in both Las and its hosts have a low coverage of the Las genome because of the low abundance of bacterial RNA in total RNA extracts from infected tissues. Therefore, a lack of understanding of the Las transcriptome remains a significant knowledge gap. Here, we used a bacterial cell enrichment procedure and confidently determined the expression profiles of approximately 84% of the Las genes. Genes that exhibited high expression in citrus include transporters, ferritin, outer membrane porins, specific pilins, and genes involved in phage-related functions, cell wall modification, and stress responses. We also found 106 genes to be differentially expressed in citrus versus Asian citrus psyllids. Genes related to transcription or translation and resilience to host defense response were upregulated in citrus, whereas genes involved in energy generation and the flagella system were expressed to higher levels in psyllids. Finally, we determined the relative expression levels of potential Sec-dependent effectors, which are considered as key virulence factors of Las. This work advances our understanding of HLB biology and offers novel insight into the interactions of Las with its plant host and insect vector.


BMC Biology ◽  
2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Lin Chou ◽  
Yu-Chen Lin ◽  
Mindia Haryono ◽  
Mary Nia M. Santos ◽  
Shu-Ting Cho ◽  
...  

Abstract Background Many named species as defined in current bacterial taxonomy correspond to species complexes. Uncertainties regarding the organization of their genetic diversity challenge research efforts. We utilized the Agrobacterium tumefaciens species complex (a.k.a. Agrobacterium biovar 1), a taxon known for its phytopathogenicity and applications in transformation, as a study system and devised strategies for investigating genome diversity and evolution of species complexes. Results We utilized 35 genome assemblies, including 14 newly generated ones, to achieve a phylogenetically balanced sampling of A. tumefaciens. Our genomic analysis suggested that the 10 genomospecies described previously are distinct biological species and supported a quantitative guideline for species delineation. Furthermore, our inference of gene content and core-genome phylogeny allowed for investigations of genes critical in fitness and ecology. For the type VI secretion system (T6SS) involved in interbacterial competition and thought to be conserved, we detected multiple losses and one horizontal gene transfer. For the tumor-inducing plasmids (pTi) and pTi-encoded type IV secretion system (T4SS) that are essential for agrobacterial phytopathogenicity, we uncovered novel diversity and hypothesized their involvement in shaping this species complex. Intriguingly, for both T6SS and T4SS, genes encoding structural components are highly conserved, whereas extensive diversity exists for genes encoding effectors and other proteins. Conclusions We demonstrate that the combination of a phylogeny-guided sampling scheme and an emphasis on high-quality assemblies provides a cost-effective approach for robust analysis in evolutionary genomics. We show that the T6SS VgrG proteins involved in specific effector binding and delivery can be classified into distinct types based on domain organization. The co-occurrence patterns of VgrG-associated domains and the neighboring genes that encode different chaperones/effectors can be used to infer possible interacting partners. Similarly, the associations between plant host preference and the pTi type among these strains can be used to infer phenotype-genotype correspondence. Our strategies for multi-level investigations at scales that range from whole genomes to intragenic domains and phylogenetic depths from between- to within-species are applicable to other bacteria. Furthermore, modularity observed in the molecular evolution of genes and domains is useful for inferring functional constraints and informing experimental works.


2022 ◽  
Vol 12 ◽  
Author(s):  
Satyanarayana Tatineni ◽  
Jeff Alexander ◽  
Feng Qu

Field-grown wheat (Triticum aestivum L.) plants can be co-infected by multiple viruses, including wheat streak mosaic virus (WSMV), Triticum mosaic virus (TriMV), brome mosaic virus (BMV), and barley stripe mosaic virus (BSMV). These viruses belong to four different genera in three different families and are, hence, genetically divergent. However, the impact of potential co-infections with two, three, or all four of them on the viruses themselves, as well as the wheat host, has yet to be examined. This study examined bi-, tri-, and quadripartite interactions among these viruses in wheat for disease development and accumulation of viral genomic RNAs, in comparison with single virus infections. Co-infection of wheat by BMV and BSMV resulted in BMV-like symptoms with a drastic reduction in BSMV genomic RNA copies and coat protein accumulation, suggesting an antagonism-like effect exerted by BMV toward BSMV. However, co-infection of either BMV or BSMV with WSMV or TriMV led to more severe disease than singly infected wheat, but with a decrease or no significant change in titers of interacting viruses in the presence of BMV or BSMV, respectively. These results were in stark contrast with exacerbated disease phenotype accompanied with enhanced virus titers caused by WSMV and TriMV co-infection. Co-infection of wheat by WSMV, TriMV, and BMV or BSMV resulted in enhanced synergistic disease accompanied by increased accumulation of TriMV and BMV but not WSMV or BSMV. Quadripartite interactions in co-infected wheat by all four viruses resulted in very severe disease synergism, leading to the death of the most infected plants, but paradoxically, a drastic reduction in BSMV titer. Our results indicate that interactions among different viruses infecting the same plant host are more complex than previously thought, do not always entail increases in virus titers, and likely involve multiple mechanisms. These findings lay the foundation for additional mechanistic dissections of synergistic interactions among unrelated plant viruses.


Author(s):  
Ashley Stengel ◽  
Rhae Drijber ◽  
Erin Carr ◽  
Thais Egreja ◽  
Edward Hillman ◽  
...  

Systems of classification are important for guiding research activities and providing a common platform for discussion and investigation. One such system is assigning microbial taxa to the roles of mutualists and pathogens. Yet, there are often challenges and even inconsistencies in reports of research findings when microbial taxa display behaviors outside of these two static conditions (e.g. commensal). Over the last two decades, there has been some effort to highlight a continuum of symbiosis, wherein certain microbial taxa may exhibit mutualistic or pathogenic traits depending on environmental contexts, life stages, and plant host associations. However, gaps remain in understanding how to apply the continuum approach to host-microbe pairs across a range of environmental and ecological factors. This commentary presents an alternative framework for evaluating the continuum of symbiosis using dominant archetypes that define symbiotic ranges. We focus particularly on fungi and bacteria, though we recognize that archaea and other microeukaryotes play important roles in host-microbe interactions that may be described by this approach. This framework is centered in eco-evolutionary theory and aims to enhance communication among researchers, as well as prioritize holistic consideration of the factors shaping microbial life strategies. We discuss the influence of plant-mediated factors, habitat constraints, co-evolutionary forces, and the genetic contributions which shape different microbial lifestyles. Looking to the future, using a continuum of symbiosis paradigm will enable greater flexibility in defining the roles of target microbes and facilitate a more holistic view of the complex and dynamic relationship between microbes and plants.


2022 ◽  
Author(s):  
Corey Robert Schultz ◽  
Kamaya Brantley ◽  
Jason G Wallace

Abstract Growth-promoting endophytes have great potential to boost crop production and sustainability. There is, however, a lack of research on how differences in the plant host affect an endophyte’s ability to promote growth. We set out to quantify how different maize genotypes respond to specific growth-promoting endophytes. We inoculated genetically diverse maize lines with three different known beneficial endophytes: Herbaspirillum seropedicae (a gram-negative bacteria), Burkholderia WP9 (a gram-negative bacteria), and Serendipita vermifera Subsp. bescii (a Basidiomycota fungus). Maize seedlings were grown for 3 weeks under controlled conditions in the greenhouse and assessed for various growth promotion phenotypes. We found Herbaspirillum seropedicae to increase chlorophyll content, plant height, root length, and root volume significantly in different maize genotypes, while Burkholderia WP9 did not significantly promote growth in any lines under these conditions. Serendipita bescii significantly increased root and shoot mass for 4 maize genotypes, and growth promotion correlated with measured fungal abundance. Although plant genetic variation by itself had a strong effect on phenotype, its interaction with the different endophytes was weak, and the endophytes rarely produced consistent effects across different genotypes. This genome-by-genome interaction indicates that the relationship between a plant host and beneficial endophytes is complex, and it may partly explain why many microbe-based growth stimulants fail to translate from laboratory settings to the field. Detangling these interactions will provide a ripe area for future studies to understand how to best harness beneficial endophytes for agriculture.


2022 ◽  
Author(s):  
Quentin Chesnais ◽  
Victor Golyaev ◽  
Amadine Velt ◽  
Camille Rustenholz ◽  
Véronique Brault ◽  
...  

Background: Evidence accumulates that plant viruses alter host-plant traits in ways that modify their insect vectors' behavior. These alterations often enhance virus transmission, which has led to the hypothesis that these effects are manipulations caused by viral adaptation. However, the genetic basis of these indirect, plant-mediated effects on vectors and their dependence on the plant host and the mode of virus transmission is hardly known. Results: Transcriptome profiling of Arabidopsis thaliana and Camelina sativa plants infected with turnip yellows virus (TuYV) or cauliflower mosaic virus (CaMV) and infested with the common aphid vector Myzus persicae revealed strong virus- and host-specific differences in the gene expression patterns. CaMV infection caused more severe effects on the phenotype of both plant hosts than did TuYV infection, and the severity of symptoms correlated strongly with the proportion of differentially expressed genes, especially photosynthesis genes. Accordingly, CaMV infection modified aphid behavior and fecundity stronger than did infection with TuYV. Conclusions: Overall, infection with CaMV — relying on the non-circulative transmission mode — tends to have effects on metabolic pathways with strong potential implications for insect-vector / plant-host interactions (e.g. photosynthesis, jasmonic acid, ethylene and glucosinolate biosynthetic processes), while TuYV — using the circulative transmission mode — alters these pathways only weakly. These virus-induced deregulations of genes that are related to plant physiology and defense responses might impact aphid probing and feeding behavior on both infected host plants, with potentially distinct effects on virus transmission. Keywords: Caulimovirus, polerovirus, aphid vector, transmission, feeding behavior, insect-plant interactions, transcriptome profiling, RNA-seq.


2022 ◽  
pp. 76-100
Author(s):  
Sreekumari Kurissery ◽  
Leah Katherine Shaw ◽  
Nandakumar Kanavillil

The term “endophyte” comes from words “endo” meaning within and “phyton” meaning plant. In 1866, De Bary first defined an endophyte as any organism that resides in the tissues of plants but not causing any harm. Thus, endophytes can be a microorganism, usually fungi or bacteria, that colonizes plants parts. The plant tissues/parts where endophytes grow include healthy leaves, petioles, stems, twigs, bark, roots, fruits, flowers, and seeds. They are found virtually in every one of the 300,000 species of vascular plants. Many endophytes co-exist in a single plant host with their populations ranging from one to hundreds of bacterial/fungal species. This chapter outlines a historical perspective of endophytes including ethnobotanical approach to drug discovery. Also, this chapter provides upto date information on the emerging role of endophytes in the sustainability of pasture and economy of agriculture, thereby contributing to the environmental sustainability.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 81
Author(s):  
Sara Rodrigo ◽  
Carlos García-Latorre ◽  
Oscar Santamaria

Many fungi, especially endophytes, have been found to produce multiple benefits in their plant hosts, with many of these benefits associated with the protection of plants against fungal diseases. This fact could be used in the development of new bio-products that could gradually reduce the need for chemical fungicides, which have been associated with multiple health and environmental problems. However, the utilization of the living organism may present several issues, such as an inconsistency in the results obtained and more complicated management and application, as fungal species are highly influenced by environmental conditions, the type of relationship with the plant host and interaction with other microorganisms. These issues could be addressed by using the bioactive compounds produced by the fungus, in cases where they were responsible for positive effects, instead of the living organism. Multiple bioactive compounds produced by fungal species, especially endophytes, with antifungal properties have been previously reported in the literature. However, despite the large amount of these metabolites and their potential, extensive in-field application on a large scale has not yet been implemented. In the present review, the main aspects explaining this limited implementation are analyzed, and the present and future perspectives for its development are discussed.


Sign in / Sign up

Export Citation Format

Share Document