scholarly journals The normal subgroup structure of the infinite general linear group

1981 ◽  
Vol 24 (3) ◽  
pp. 197-202 ◽  
Author(s):  
David G. Arrell

The classification of the normal subgroups of the infinite general linear group GL(Ω, R) has received much attention and has been studied in, for example, (6), (4) and (2). The main theorem of (6) gives a complete classification of the normal subgroups of GL(Ω, R) when R is a division ring, while the results of (2) require that R satisfies certain finiteness conditions. The object of this paper is to produce a classification, along the lines of that given by Wilson in (7) or by Bass in (3) in the finite dimensional case, that does not require any finiteness assumptions. However, when R is Noetherian, the classification given here reduces to that given in (2).

1982 ◽  
Vol 25 (1) ◽  
pp. 81-86 ◽  
Author(s):  
David G. Arrell

Let R be a ring with identity, let Ω be an infinite set and let M be the free R-module R(Ω). In [1] we investigated the problem of locating and classifying the normal subgroups of GL(Ω, R), the group of units of the endomorphism ring EndRM, where R was an arbitrary ring with identity. (This extended the work of [3] and [8] where it was necessary for R to satisfy certain finiteness conditions.) When R is a division ring, the complete classification of the normal subgroups of GL(Ω, R) is given in [9] and the corresponding results for a Hilbert space are given in [6] and [7]. The object of this paper is to extend the methods of [1] to yield a classification of the subnormal subgroups of GL(Ω, R) along the lines of that given by Wilson in [10] in the finite dimensional case.


1969 ◽  
Vol 21 ◽  
pp. 106-135 ◽  
Author(s):  
Norbert H. J. Lacroix

The problem of classifying the normal subgroups of the general linear group over a field was solved in the general case by Dieudonné (see 2 and 3). If we consider the problem over a ring, it is trivial to see that there will be more normal subgroups than in the field case. Klingenberg (4) has investigated the situation over a local ring and has shown that they are classified by certain congruence groups which are determined by the ideals in the ring.Klingenberg's solution roughly goes as follows. To a given ideal , attach certain congruence groups and . Next, assign a certain ideal (called the order) to a given subgroup G. The main result states that if G is normal with order a, then ≧ G ≧ , that is, G satisfies the so-called ladder relation at ; conversely, if G satisfies the ladder relation at , then G is normal and has order .


1987 ◽  
Vol 29 (2) ◽  
pp. 185-196 ◽  
Author(s):  
P. G. Appleby ◽  
B. R. Duffy ◽  
R. W. Ogden

A tensor is said to be isotropic relative to a group of transformations if its components are invariant under the associated group of coordinate transformations. In this paper we review the classification of tensors which are isotropic under the general linear group, the special linear (unimodular) group and the rotational group. These correspond respectively to isotropic absolute tensors [4, 8] isotropic relative tensors [4] and isotropic Cartesian tensors [3]. New proofs are given for the representation of isotropic tensors in terms of Kronecker deltas and alternating tensors. And, for isotropic Cartesian tensors, we provide a complete classification, clarifying results described in [3].In the final section of the paper certain derivatives of isotropic tensor fields are examined.


Author(s):  
J. S. Wilson

The problem of locating and classifying the normal subgroups of GLn(R), the general linear group of degree n over a commutative ring R with an identity element, has received considerable attention. The solution when R is a field is well known (of. Dieudonné(5), Artin(1)): unless n is equal to two and R has two or three elements, normal subgroups of GLn(R) either lie in the centre of GLn(R) or contain the special linear group SLn(R). However, if R is not a field, then for each ideal I of R the natural map R → R/I induces a homomorphismand, if 0 < I < R, the kernel of θ1 is a non-central normal subgroup of GLn(R) which does not contain SLn(R). The most that may be expected is that each normal subgroup determines an ideal I of R, in such a way that all normal subgroups determining the same ideal I lie between suitably defined greatest and smallest normal subgroups of GLn(R) corresponding to I. For example, write ZI for the inverse image of the centre of GLn(R/I) under the homomorphism θI, and write KI for the intersection of SLn(R) with the kernel of θI. Then KI ≽ ZI, and the results of Klingenberg(7) and Mennicke(9) show that if n ≥ 3, and if R is either a local ring or the ring of rational integers, then any normal subgroup H of GLn(R) satisfiesfor some uniquely determined ideal I. There are many similar theorems. That the above result breaks down for arbitrary rings, even for large n, follows easily from the negative solution to the congruence subgroup problem for certain rings of algebraic integers (see Bass, Milnor and Serre(3)).


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ivan Matić

AbstractLet {G_{n}} denote either the group {\mathrm{SO}(2n+1,F)} or {\mathrm{Sp}(2n,F)} over a non-archimedean local field of characteristic different than two. We study parabolically induced representations of the form {\langle\Delta\rangle\rtimes\sigma}, where {\langle\Delta\rangle} denotes the Zelevinsky segment representation of the general linear group attached to the segment Δ, and σ denotes a discrete series representation of {G_{n}}. We determine the composition series of {\langle\Delta\rangle\rtimes\sigma} in the case when {\Delta=[\nu^{a}\rho,\nu^{b}\rho]} where a is half-integral.


Sign in / Sign up

Export Citation Format

Share Document