Free quotients of fundamental groups of smooth quasi-projective varieties
Abstract We study the fundamental groups of the complements to curves on simply connected surfaces, admitting non-abelian free groups as their quotients. We show that given a subset of the Néron–Severi group of such a surface, there are only finitely many classes of equisingular isotopy of curves with irreducible components belonging to this subset for which the fundamental groups of the complement admit surjections onto a free group of a given sufficiently large rank. Examples of subsets of the Néron–Severi group are given with infinitely many isotopy classes of curves with irreducible components from such a subset and fundamental groups of the complements admitting surjections on a free group only of a small rank.