scholarly journals Free quotients of fundamental groups of smooth quasi-projective varieties

Author(s):  
Jose I. Cogolludo ◽  
Anatoly Libgober

Abstract We study the fundamental groups of the complements to curves on simply connected surfaces, admitting non-abelian free groups as their quotients. We show that given a subset of the Néron–Severi group of such a surface, there are only finitely many classes of equisingular isotopy of curves with irreducible components belonging to this subset for which the fundamental groups of the complement admit surjections onto a free group of a given sufficiently large rank. Examples of subsets of the Néron–Severi group are given with infinitely many isotopy classes of curves with irreducible components from such a subset and fundamental groups of the complements admitting surjections on a free group only of a small rank.

1974 ◽  
Vol 17 (2) ◽  
pp. 129-132 ◽  
Author(s):  
T. C. Chau

We shall take for granted the basic terminology currently in use in the theory of varieties of groups. Kovács, Newman, Pentony [2] and Levin [3] prove that if m is an integer greater than 2, then the variety Νm of all nilpotent groups of class at most m is generated by its free group Fm-1(Νm) of rank m – 1 but not by its free group Fm–2(Νm) of rank m — 2. That is, the free groups Fk(Nm), 2≦k ≦ m – 2, do not generate Nm. In general little is known of the varieties generated by them. The purpose of the present paper is to record the varieties of the free groups Fk(Nm) of the nilpotent varieties Nm of all nilpotent groups of class at most m for 2 ≦ k ≦ m – 2 and 5 ≦ m ≦ 6. This is done by describing a basis for the laws in these groups, that is a set of laws the fully invariant closure of which is the set of all laws for Fk(Nm). The set of laws, which, together with the appropriate nilpotency law, form a basis for the relevant groups Fk(Nm) are listed below: .


Author(s):  
MICHAEL BEN–ZVI ◽  
ROBERT KROPHOLLER ◽  
RYLEE ALANZA LYMAN

Abstract In a seminal paper, Stallings introduced folding of morphisms of graphs. One consequence of folding is the representation of finitely-generated subgroups of a finite-rank free group as immersions of finite graphs. Stallings’s methods allow one to construct this representation algorithmically, giving effective, algorithmic answers and proofs to classical questions about subgroups of free groups. Recently Dani–Levcovitz used Stallings-like methods to study subgroups of right-angled Coxeter groups, which act geometrically on CAT(0) cube complexes. In this paper we extend their techniques to fundamental groups of non-positively curved cube complexes.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Anamaría Font ◽  
Bernardo Fraiman ◽  
Mariana Graña ◽  
Carmen A. Núñez ◽  
Héctor Parra De Freitas

Abstract Compactifications of the heterotic string on special Td/ℤ2 orbifolds realize a landscape of string models with 16 supercharges and a gauge group on the left-moving sector of reduced rank d + 8. The momenta of untwisted and twisted states span a lattice known as the Mikhailov lattice II(d), which is not self-dual for d > 1. By using computer algorithms which exploit the properties of lattice embeddings, we perform a systematic exploration of the moduli space for d ≤ 2, and give a list of maximally enhanced points where the U(1)d+8 enhances to a rank d + 8 non-Abelian gauge group. For d = 1, these groups are simply-laced and simply-connected, and in fact can be obtained from the Dynkin diagram of E10. For d = 2 there are also symplectic and doubly-connected groups. For the latter we find the precise form of their fundamental groups from embeddings of lattices into the dual of II(2). Our results easily generalize to d > 2.


1949 ◽  
Vol 1 (2) ◽  
pp. 187-190 ◽  
Author(s):  
Marshall Hall

This paper has as its chief aim the establishment of two formulae associated with subgroups of finite index in free groups. The first of these (Theorem 3.1) gives an expression for the total length of the free generators of a subgroup U of the free group Fr with r generators. The second (Theorem 5.2) gives a recursion formula for calculating the number of distinct subgroups of index n in Fr.Of some independent interest are two theorems used which do not involve any finiteness conditions. These are concerned with ways of determining a subgroup U of F.


2001 ◽  
Vol 4 ◽  
pp. 135-169 ◽  
Author(s):  
Frank Lübeck

AbstractThe author has determined, for all simple simply connected reductive linear algebraic groups defined over a finite field, all the irreducible representations in their defining characteristic of degree below some bound. These also give the small degree projective representations in defining characteristic for the corresponding finite simple groups. For large rank l, this bound is proportional to l3, and for rank less than or equal to 11 much higher. The small rank cases are based on extensive computer calculations.


2011 ◽  
Vol 21 (04) ◽  
pp. 595-614 ◽  
Author(s):  
S. LIRIANO ◽  
S. MAJEWICZ

If G is a finitely generated group and A is an algebraic group, then RA(G) = Hom (G, A) is an algebraic variety. Define the "dimension sequence" of G over A as Pd(RA(G)) = (Nd(RA(G)), …, N0(RA(G))), where Ni(RA(G)) is the number of irreducible components of RA(G) of dimension i (0 ≤ i ≤ d) and d = Dim (RA(G)). We use this invariant in the study of groups and deduce various results. For instance, we prove the following: Theorem A.Let w be a nontrivial word in the commutator subgroup ofFn = 〈x1, …, xn〉, and letG = 〈x1, …, xn; w = 1〉. IfRSL(2, ℂ)(G)is an irreducible variety andV-1 = {ρ | ρ ∈ RSL(2, ℂ)(Fn), ρ(w) = -I} ≠ ∅, thenPd(RSL(2, ℂ)(G)) ≠ Pd(RPSL(2, ℂ)(G)). Theorem B.Let w be a nontrivial word in the free group on{x1, …, xn}with even exponent sum on each generator and exponent sum not equal to zero on at least one generator. SupposeG = 〈x1, …, xn; w = 1〉. IfRSL(2, ℂ)(G)is an irreducible variety, thenPd(RSL(2, ℂ)(G)) ≠ Pd(RPSL(2, ℂ)(G)). We also show that if G = 〈x1, . ., xn, y; W = yp〉, where p ≥ 1 and W is a word in Fn = 〈x1, …, xn〉, and A = PSL(2, ℂ), then Dim (RA(G)) = Max {3n, Dim (RA(G′)) +2 } ≤ 3n + 1 for G′ = 〈x1, …, xn; W = 1〉. Another one of our results is that if G is a torus knot group with presentation 〈x, y; xp = yt〉 then Pd(RSL(2, ℂ)(G))≠Pd(RPSL(2, ℂ)(G)).


1998 ◽  
Vol 41 (2) ◽  
pp. 325-332 ◽  
Author(s):  
D. Gaboriau ◽  
G. Levitt ◽  
M. Lustig

Let α be an automorphism of a free group of rank n. The Scott conjecture, proved by Bestvina-Handel, asserts that the fixed subgroup of α has rank at most n. We give a short alternative proof of this result using R-trees.


2019 ◽  
Vol 12 (2) ◽  
pp. 590-604
Author(s):  
M. Fazeel Anwar ◽  
Mairaj Bibi ◽  
Muhammad Saeed Akram

In \cite{levin}, Levin conjectured that every equation is solvable over a torsion free group. In this paper we consider a nonsingular equation $g_{1}tg_{2}t g_{3}t g_{4} t g_{5} t g_{6} t^{-1} g_{7} t g_{8}t \\ g_{9}t^{-1} = 1$ of length $9$ and show that it is solvable over torsion free groups modulo some exceptional cases.


2015 ◽  
Vol 159 (1) ◽  
pp. 89-114 ◽  
Author(s):  
MORITZ RODENHAUSEN ◽  
RICHARD D. WADE

AbstractWe refine Cohen and Lustig's description of centralisers of Dehn twists of free groups. We show that the centraliser of a Dehn twist of a free group has a subgroup of finite index that has a finite classifying space. We describe an algorithm to find a presentation of the centraliser. We use this algorithm to give an explicit presentation for the centraliser of a Nielsen automorphism in Aut(Fn). This gives restrictions to actions of Aut(Fn) on CAT(0) spaces.


Sign in / Sign up

Export Citation Format

Share Document