projective varieties
Recently Published Documents


TOTAL DOCUMENTS

472
(FIVE YEARS 82)

H-INDEX

21
(FIVE YEARS 2)

Author(s):  
Lukas Braun

AbstractWe show that finitely generated Cox rings are Gorenstein. This leads to a refined characterization of varieties of Fano type: they are exactly those projective varieties with Gorenstein canonical quasicone Cox ring. We then show that for varieties of Fano type and Kawamata log terminal quasicones X, iteration of Cox rings is finite with factorial master Cox ring. In particular, even if the class group has torsion, we can express such X as quotients of a factorial canonical quasicone by a solvable reductive group.


Author(s):  
Laurentiu George Maxim

We give a brief overview of recent developments on the calculation of generating series for invariants of external products of suitable coefficients (e.g., constructible or coherent sheaves, or mixed Hodge modules) on complex quasi-projective varieties.


Author(s):  
Jose I. Cogolludo ◽  
Anatoly Libgober

Abstract We study the fundamental groups of the complements to curves on simply connected surfaces, admitting non-abelian free groups as their quotients. We show that given a subset of the Néron–Severi group of such a surface, there are only finitely many classes of equisingular isotopy of curves with irreducible components belonging to this subset for which the fundamental groups of the complement admit surjections onto a free group of a given sufficiently large rank. Examples of subsets of the Néron–Severi group are given with infinitely many isotopy classes of curves with irreducible components from such a subset and fundamental groups of the complements admitting surjections on a free group only of a small rank.


Author(s):  
Grigoriy Blekherman ◽  
Rainer Sinn ◽  
Gregory G. Smith ◽  
Mauricio Velasco

Sign in / Sign up

Export Citation Format

Share Document