First evidence of endemic Murinae (Rodentia, Mammalia) in the early Pliocene of the Balearic Islands (western Mediterranean)

2019 ◽  
Vol 156 (10) ◽  
pp. 1742-1750 ◽  
Author(s):  
Enric Torres-Roig ◽  
Pedro Piñero ◽  
Jordi Agustí ◽  
Pere Bover ◽  
Josep Antoni Alcover

AbstractA new insular species of Paraethomys (Muridae, Rodentia) with medium-sized hypsodont teeth is described from the Zanclean of Mallorca (Balearic Islands, western Mediterranean). The m1 displays the most distinctive traits: hypsodonty, a high occurrence of an unusual anterior cingulum, a well-developed labial cingulum, high accessory labial cuspids resembling the Apodemus pattern and a funnel between c1 and the hypoconid. Paraethomys balearicus sp. nov. preserves traits close to those present in the earliest populations of Paraethomys meini from the upper Turolian, such as a developed posterior spur on t3 in the M1, a connection between t4 and t8 in the M1, a narrow connection between t6 and t9 in the M1 and the occasional presence of an individualized t9 and a t12 in some M2s. The relationship between the new taxon and its direct mainland ancestor gives additional support to a Messinian origin for the so-called Myotragus fauna, which became isolated after the refilling of the Mediterranean Sea 5.33 Ma ago. The absence of Paraethomys in other known younger Mallorcan sites suggests that its extinction most probably occurred at an indeterminate time during the Pliocene Epoch.

2010 ◽  
Vol 147 (6) ◽  
pp. 871-885 ◽  
Author(s):  
PERE BOVER ◽  
JOSEP QUINTANA ◽  
JOSEP ANTONI ALCOVER

AbstractMyotragus palomboi n.sp. (Artiodactyla, Caprinae) is described from the Early Pliocene of Mallorca (Balearic Islands, western Mediterranean). This species is the earliest representative of the Myotragus lineage known to date in the Balearic Islands. A metatarsal, and several teeth and postcranial remains were found in a karstic deposit located on the east coast of the island, near Caló den Rafelino (Manacor), together with remains of Hypolagus, two rodent species, an insectivore and several reptiles. The metatarsal and phalanges of the new bovid are short and robust and display a combination of characters only observed in Myotragus. The presence of a larger p2, a metatarsal robustness index lower than in M. pepgonellae (the earliest known species to date), together with the morphology of the incisors, all suggest that M. palomboi should be considered as the ancestor of M. pepgonellae. Short metapodials and the reduction of p2 displayed by M. palomboi could be linked to a first stage of evolution in insular conditions. The arrival of this bovid to the island of Mallorca probably took place during the Mediterranean Messinian Salinity Crisis (Late Miocene, 5.6–5.32 Ma ago). Although the relationship of the new taxon to other fossil caprines cannot be definitively established, it could be phylogenetically close to the Late Miocene European species Aragoral mudejar and Norbertia hellenica.


2017 ◽  
Vol 18 (2) ◽  
pp. 332
Author(s):  
J. MOREIRA ◽  
J. JUNOY

Benthic monitoring of the marine shallow bottoms off Menorca (Balearic Islands, western Mediterranean) has yielded several specimens of the leptostracan genus Paranebalia Claus, 1880. This finding constitutes the first report of the genus from European latitudes and the Mediterranean Sea and therefore the third leptostracan genus known from the Mediterranean. Specimens are described, illustrated and compared to other known species; they might represent a new species but their state of maturity and the lack of an appropriate diagnosis for the type species of the genus, Paranebalia longipes (Willemöes-Suhm, 1875), did not allow to confirm its taxonomic status.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11879
Author(s):  
Julio A. Díaz ◽  
Sergio Ramírez-Amaro ◽  
Francesc Ordines

Background The seamounts Ses Olives (SO), Ausias March (AM) and Emile Baudot (EB) at the Mallorca Channel (Balearic Islands, western Mediterranean), are poorly explored areas containing rich and singular sponge communities. Previous works have shown a large heterogeneity of habitats, including rhodolith beds, rocky, gravel and sandy bottoms and steeped slopes. This diversity of habitats provides a great opportunity for improving the knowledge of the sponges from Mediterranean seamounts. Methods Sponges were collected during several surveys carried out by the Balearic Center of the Spanish Institute of Oceanography at the Mallorca Channel seamounts. Samples were obtained using a beam-trawl, rock dredge and remote operated vehicle. Additional samples were obtained from fishing grounds of the Balearic Islands continental shelf, using the sampling device GOC-73. Sponges were identified through the analysis of morphological and molecular characters. Results A total of 60 specimens were analyzed, from which we identified a total of 19 species. Three species and one genus are new to science: Foraminospongia balearica gen. nov. sp. nov., Foraminospongia minuta gen. nov. sp. nov. and Paratimea massutii sp. nov. Heteroxya cf. beauforti represents the first record of the genus Heteroxya in the Mediterranean Sea. Additionally, this is the second report of Axinella spatula and Haliclona (Soestella) fimbriata since their description. Moreover, the species Petrosia (Petrosia) raphida, Calyx cf. tufa and Lanuginella pupa are reported for the first time in the Mediterranean Sea. Petrosia (Strongylophora) vansoesti is reported here for the first time in the western Mediterranean Sea. Haliclona (S.) fimbriata is reported here for the first time in the north-western Mediterranean Sea. Hemiasterella elongata is reported here for the second time in the Mediterranean Sea. The species Melonanchora emphysema, Rhabdobaris implicata, Polymastia polytylota, Dragmatella aberrans, Phakellia ventilabrum and Pseudotrachya hystrix are reported for first time off Balearic Islands. Following the Sponge Barcoding project goals, we have sequenced the Cytochrome Oxidase subunit I (COI) and the 28S ribosomal fragment (C1–D2 domains) for Foraminospongia balearica sp. nov., Foraminospongia minuta sp. nov., H. cf. beauforti and C. cf. tufa, and the COI for Paratimea massuti sp. nov. We also provide a phylogenetic analysis to discern the systematic location of Foraminospongia gen. nov., which, in accordance to skeletal complement, is placed in the Hymerhabdiidae family. A brief biogeographical discussion is provided for all these species, with emphasis on the sponge singularity of SO, AM and the EB seamounts and the implications for their future protection.


Author(s):  
J.A. Reina-Hervás ◽  
J.E. García Raso ◽  
M.E. Manjón-Cabeza

The capture of a specimen of Sphoeroides spengleri (Osteichthyes: Tetraodontidae), 17 December 2000 and 29·7 mm total length, from the Málaga coast (Alborán Sea, western Mediterranean) represents the first record of a new alien species for Mediterranean waters.


Author(s):  
Enric Massutí ◽  
J.A. Reina-Hervás ◽  
Domingo Lloris ◽  
L. Gil de Sola

The capture of five specimens of Solea (Microchirus) boscanion (Osteichthyes: Soleidae), a species previously unrecorded in the Mediterranean, is reported from the Iberian coast (western Mediterranean). The main morphometric and meristic measurements of this species with data of the other sympatric, and morphologically very similar, soleids Microchirus variegatus and Buglossidium luteum are also given. The record is discussed in relation to climate change and competition between species.


2015 ◽  
Author(s):  
Jasmine Ferrario ◽  
Agnese Marchini ◽  
Martina Marić ◽  
Dan Minchin ◽  
Anna Occhipinti-Ambrogi

The Pacific cheilostome bryozoan Celleporaria brunnea (Hincks, 1884), a non-indigenous species already known for the Mediterranean Sea, was recorded in 2013-2014 from nine Italian port localities (Genoa, Santa Margherita Ligure, La Spezia, Leghorn, Viareggio, Olbia, Porto Rotondo, Porto Torres and Castelsardo) in the North-western Mediterranean Sea; in 2014 it was also found for the first time in the Adriatic Sea, in the marina “Kornati”, Biograd na Moru (Croatia). In Italy, specimens of C. brunnea were found in 44 out of 105 samples (48% from harbour sites ad 52% from marinas). These data confirm and update the distribution of C. brunnea in the Mediterranean Sea, and provide evidence that recreational boating is a vector responsible for the successful spread of this species. Previous literature data have shown the existence of differences in orifice and interzooidal avicularia length and width among different localities of the invaded range of C. brunnea. Therefore, measurements of orifice and avicularia were assessed for respectively 30 zooids and 8 to 30 interzooidal avicularia for both Italian and Croatian localities, and compared with literature data, in order to verify the existence of differences in the populations of C. brunnea that could reflect the geographic pattern of its invasion range. Our data show high variability of orifice measures among and within localities: zooids with broader than long orifice coexisted with others displaying longer than broad orifice, or similar values for both length and width. The morphological variation of C. brunnea in these localities, and above all the large variability of samples within single localities or even within colonies poses questions on the reliability of such morphometric characters for inter and intraspecific evaluations.


2012 ◽  
Vol 13 (1) ◽  
pp. 89 ◽  
Author(s):  
L.M. FERRERO-VICENTE ◽  
A. LOYA-FERNANDEZ ◽  
C. MARCO-MENDEZ ◽  
E. MARTINEZ-GARCIA ◽  
J.I. SAIZ-SALINAS ◽  
...  

Specimens of the sipunculan worm Phascolion (Phascolion) caupo Hendrix, 1975 have been collected for the first time in the Mediterranean Sea, thus increasing the number of known sipunculan species of up to 36 in this area. They were encountered on soft bottoms from the coast of San Pedro del Pinatar (Western Mediterranean). Thirty specimens were collected at a depth ranging from 32.6 to 37.2 m, mainly in sandy substrata with high load of silt and clays. 80% of the individuals were found inhabiting empty shells of gastropods or empty tubes of serpulid polychaetes.


2021 ◽  
Author(s):  
Giusy Fedele ◽  
Elena Mauri ◽  
Giulio Notarstefano ◽  
Pierre Marie Poulain

Abstract. The Atlantic Water (AW) and Levantine Intermediate Water (LIW) are important water masses that play a crucial role in the internal variability of the Mediterranean thermohaline circulation. In particular, their variability and interaction, along with other water masses that characterize the Mediterranean basin, such as the Western Mediterranean Deep Water (WMDW), contribute to modify the Mediterranean Outflow through the Gibraltar Strait and hence may influence the stability of the global thermohaline circulation. This work aims to characterize the AW and LIW in the Mediterranean Sea, taking advantage of the large observational dataset provided by Argo floats from 2001 to 2019. Using different diagnostics, the AW and LIW were identified, highlighting the inter-basin variability and the strong zonal gradient that characterize the two water masses in this marginal sea. Their temporal variability was also investigated focusing on trends and spectral features which constitute an important starting point to understand the mechanisms that are behind their variability. A clear salinification and warming trend have characterized the AW and LIW in the last two decades (~0.007 and 0.008 yr−1; 0.018 and 0.007 °C yr−1, respectively). The salinity and temperature trends found at subbasin scale are in good agreement with previous results. The strongest trends are found in the Adriatic basin in both the AW and LIW properties. A subbasin dependent spectral variability emerges in the AW and LIW salinity timeseries with peaks between 2 and 10 years.


2019 ◽  
Author(s):  
Piero Lionello ◽  
Dario Conte ◽  
Marco Reale

Abstract. Large positive and negative sea level anomalies at the coast of the Mediterranean Sea are linked to intensity and position of cyclones moving along the Mediterranean storm track, with dynamics involving different factors. This analysis is based on a model hindcast and considers nine coastal stations, which are representative of sea level anomalies with different magnitude and characteristics. When a shallow water fetch is present, the wind around the cyclone center is the main cause of sea level positive and negative anomalies, depending on its onshore or offshore direction. The inverse barometer effect produces a positive anomaly at the coast near the cyclone pressure minimum and a negative anomaly at the opposite side of the Mediterranean Sea, because a cross-basin mean sea level pressure gradient is associated to the presence of a cyclone. Further, at some stations, negative sea level anomalies are reinforced by a residual water mass redistribution within the basin, which is associated with a transient response to the atmospheric pressure forcing. Though the link between presence of a cyclone in the Mediterranean has comparable importance for positive and negative anomalies, the relation between cyclone position and intensity is stronger for the magnitude of positive events. Area of cyclogenesis, track of the central minimum and position at the time of the event differ depending on the location where the sea level anomaly occurs and on its sign. The western Mediterranean is the main cyclogenesis area for both positive and negative anomalies, overall. Atlantic cyclones mainly produce positive sea level anomalies in the western basin. At the easternmost stations, positive anomalies are caused by Cyclogenesis in the Eastern Mediterranean. North Africa cyclogeneses are a major source of positive anomalies at the central African coast and negative anomalies at the eastern Mediterranean and North Aegean coast.


Sign in / Sign up

Export Citation Format

Share Document