western basin
Recently Published Documents


TOTAL DOCUMENTS

292
(FIVE YEARS 71)

H-INDEX

34
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Csilla Balogh ◽  
Jarosław Kobak ◽  
Zsófia Kovács ◽  
József Serfőző ◽  
Nóra Faragó ◽  
...  

AbstractAfter introduction, the invasive bivalve dreissenids became key species in the biota of Lake Balaton, the largest shallow lake in Central Europe. The contribution of dreissenid soft tissue and shell, as biotic phases, in element distribution and its interaction with the water and upper sediment phases were examined in two basins with different trophic conditions in spring and autumn. Six metals (Ba, Cu, Fe, Mn, Pb, Zn) were detected in all investigated phases. In general, metals were abundant in the water and soft tissue in the eastern basin in spring, and in the sediment and shells in the western basin in autumn. This might be associated with the more urbanized surroundings in the eastern, and the enhanced organic matter production in the western basin. High relative shares of Ba, Cu, Mn, and Pb were associated with the water and shell samples, whereas high shares of Fe and Zn were noted in the soft mussel tissue and sediments. Results suggest that dynamics of metal uptake by dreissenids depend on the seasonal change in metabolic activity. Shell metal content is less changeable; shells might absorb metals from both the soft tissue and water phases. Metallothionein peptides, the scavengers of intracellular metals, were determined to be biomarkers of the bulk contaminants rather than only metals. The present study shows that invasive bivalves, with high abundance, filtering activity, and storing capacity can significantly contribute to element distribution in the shoreline of a shallow lake ecosystem.


2022 ◽  
Author(s):  
Andrés Fernando Orejarena ◽  
Juan Manuel Sayol ◽  
Ismael Hernández-carrasco ◽  
Alejandro Cáceres ◽  
Juan Camilo Restrepo ◽  
...  

Abstract Wave energy flux (WEF) is assessed in the Caribbean Sea from a 60-year (1958--2017) wave hindcast. We use a novel approach, based on neural networks, to identify coherent regions of similar WEF and their association with different climate patterns. This method allows for a better evaluation of the underlying dynamics behind seasonal and inter-annual WEF variability, including the effect induced by the latitudinal migration of the Intertropical Convergence Zone (ITCZ), and the influence of El Ni\~no-Southern Oscillation events. Results show clear regional differences of the WEF variability likely due to both a clear regionalization of the WEF due to both the intensification and migration of the ITCZ. WEF exhibits a strong semiseasonal signal in areas of the continental shelf, with maximums in January and June, in agreement with the sea surface temperature and sea level pressure variability. At larger scales, WEF shows a significant correlation with the Oceanic Ni\~no Index depicting positive values in the central and western basin and negative ones at the eastern side.


GeoHazards ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 415-429
Author(s):  
Paraskevi Nomikou ◽  
Dimitris Evangelidis ◽  
Dimitrios Papanikolaou ◽  
Danai Lampridou ◽  
Dimitris Litsas ◽  
...  

A hydrographic survey of the southwestern coastal margin of Lesvos Island (Greece) was conducted by the Naftilos vessel of the Hellenic Hydrographic Service. The results have been included in a bathymetric map and morphological slope map of the area. Based on the neotectonic and seismotectonic data of the broader area, a morphotectonic map of Lesvos Island has been compiled. The main feature is the basin sub-parallel to the coast elongated Lesvos Basin, 45 km long, 10–35 km wide, and 700 m deep. The northern margin of the basin is abrupt, with morphological slopes towards the south between 35° and 45° corresponding to a WNW-ESE normal fault, in contrast with the southern margin that shows a gradual slope increase from 1° to 5° towards the north. Thus, the main Lesvos Basin represents a half-graben structure. The geometry of the main basin is interrupted at its eastern segment by an oblique NW-SE narrow channel of 650 m depth and 8 km length. East of the channel, the main basin continues as a shallow Eastern Basin. At the western part of the Lesvos margin, the shallow Western Basin forms an asymmetric tectonic graben. Thus, the Lesvos southern margin is segmented in three basins with different morphotectonic characteristics. At the northwestern margin of Lesvos, three shallow basins of 300–400 m depth are observed with WNW-ESE trending high slope margins, probably controlled by normal faults. Shallow water marine terraces representing the last low stands of the glacial periods are observed at 140 m and 200 m depth at the two edges of the Lesvos margin. A secondary E-W fault disrupts the two terraces at the eastern part of the southern Lesvos margin. The NE-SW strike-slip fault zone of Kalloni-Aghia Paraskevi, activated in 1867, borders the west of the Lesvos Basin from the shallow Western Basin. The Lesvos bathymetric data were combined with those of the eastern Skyros Basin, representing the southern strand of the North Anatolian Fault in the North Aegean Sea, and the resulted tectonic map indicates that the three Lesvos western basins are pull-aparts of the strike-slip fault zone between the Skyros Fault and the Adramytion (Edremit) Fault. The seismic activity since 2017 has shown the co-existence of normal faulting and strike-slip faulting throughout the 90 km long Lesvos southern margin.


Ethnohistory ◽  
2021 ◽  
Vol 68 (4) ◽  
pp. 455-491
Author(s):  
Jerome A. Offner

Abstract Only one of two opening compositions in the Codex Xolotl has been recognized. The conventional version shows the entry of Xolotl, Nopaltzin, and six lesser rulers into the Basin of Mexico from near Tula, Hidalgo, followed by settlement at Xoloc and later a place that will become Tenayuca. The manuscript’s two larger fragments, assembled correctly for the first time, show Xolotl and Nopaltzin observing and moving across a more settled eastern basin into regions to the south ranging from Puebla to Morelos, notably including Cuernavaca. At the same time, they and their six followers are shown settled among caves in the western basin around the future Tenayuca. The two Chichimecs attract fellow Chichimecs from the Cuernavaca region to the Tepetlaoztoc region and trouble ensues. These two realizations of a Chichimec vision of empire are well recorded by the remarkable Aztec graphic communication system. Its portrayal of changes to different ways of life over the centuries reveals an interplay of an oral gathering and hunting culture with a settled society, recording the Chichimec experience and their own way of life with their combined oral and graphic system. Elements of the Chichimecs’ visions of empire endure throughout the Codex Xolotl as its messaging power shines across the contact period and into early colonial times.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257017
Author(s):  
Alexa K. Hoke ◽  
Guadalupe Reynoso ◽  
Morgan R. Smith ◽  
Malia I. Gardner ◽  
Dominique J. Lockwood ◽  
...  

Microbial interactions in harmful algal bloom (HAB) communities have been examined in marine systems, but are poorly studied in fresh waters. To investigate HAB-microbe interactions, we isolated bacteria with close associations to bloom-forming cyanobacteria, Microcystis spp., during a 2017 bloom in the western basin of Lake Erie. The genomes of five isolates (Exiguobacterium sp. JMULE1, Enterobacter sp. JMULE2, Deinococcus sp. JMULE3, Paenibacillus sp. JMULE4, and Acidovorax sp. JMULE5.) were sequenced on a PacBio Sequel system. These genomes ranged in size from 3.1 Mbp (Exiguobacterium sp. JMULE1) to 5.7 Mbp (Enterobacter sp. JMULE2). The genomes were analyzed for genes relating to critical metabolic functions, including nitrogen reduction and carbon utilization. All five of the sequenced genomes contained genes that could be used in potential signaling and nutrient exchange between the bacteria and cyanobacteria such as Microcystis. Gene expression signatures of algal-derived carbon utilization for two isolates were identified in Microcystis blooms in Lake Erie and Lake Tai (Taihu) at low levels, suggesting these organisms are active and may have a functional role during Microcystis blooms in aggregates, but were largely missing from whole water samples. These findings build on the growing evidence that the bacterial microbiome associated with bloom-forming algae have the functional potential to contribute to nutrient exchange within bloom communities and interact with important bloom formers like Microcystis.


2021 ◽  
Vol 13 (17) ◽  
pp. 3349
Author(s):  
Chuiqing Zeng ◽  
Caren E. Binding

Envisat’s MERIS and its successor Sentinel OLCI have proven invaluable for documenting algal bloom conditions in coastal and inland waters. Observations over turbid eutrophic waters, in particular, have benefited from the band at 708 nm, which captures the reflectance peak associated with intense algal blooms and is key to line-height algorithms such as the Maximum Chlorophyll Index (MCI). With the MERIS mission ending in early 2012 and OLCI launched in 2016, however, time-series studies relying on these two sensors have to contend with an observation gap spanning four years. Alternate sensors, such as MODIS Aqua, offering neither the same spectral band configuration nor consistent spatial resolution, present challenges in ensuring continuity in derived bloom products. This study explores a neural network (NN) solution to fill the observation gap between MERIS and OLCI with MODIS Aqua data, delivering consistent algal bloom spatial extent products from 2002 to 2020 using these three sensors. With 14 bands of MODIS level 2 partially atmospherically corrected spectral reflectance as the NN input, the missing MERIS/OLCI band at 708 nm required for the MCI is simulated. The resulting NN-derived MODIS MCI (NNMCI) is shown to be in good agreement with MERIS and OLCI MCI in 2011 and 2017 respectively over the western basin of Lake Erie (R2 = 0.84, RMSE = 0.0032). To overcome the impact of MODIS sensor saturation over bright water targets, which otherwise renders pixels unusable for bloom detection using R-NIR wavebands, a variant NN model is employed which uses the 9 MODIS bands with the lowest probability of saturation to simulate the MCI. This variant NN predicts MCI with only a small increase in uncertainty (R2 = 0.73, RMSE = 0.005) allowing reliable estimates of bloom conditions in those previously unreported pixels. The NNMCI is shown to be robust when applied beyond the initial training dataset on Lake Erie, and when re-trained on different geographic areas (Lake Winnipeg and Lake of the Woods). Despite differences in spatial, temporal, and spectral resolution, MODIS algal bloom presence/absence was correctly classified in >92% of cases and bloom spatial extent derived within 25% uncertainty, allowing the application to the 2012–2015 time period to form a continuous and consistent multi-mission monitoring dataset from 2002 to 2020.


2021 ◽  
Vol 8 ◽  
Author(s):  
Karl R. Bosse ◽  
Michael J. Sayers ◽  
Robert A. Shuchman ◽  
John Lekki ◽  
Roger Tokars

The states of Michigan and Ohio issued shutdown orders in mid-March 2020 in an attempt to slow the spread of the coronavirus (COVID-19), resulting in widespread disruption to economic and human activity. This study, which was commissioned by NASA headquarters, utilized satellite remote sensing data from the Visible Infrared Imaging Radiometer Suite sensor onboard the Suomi National Polar-orbiting Partnership satellite to investigate whether these changes in activity led to any short-term changes in water quality in the Great Lakes region by comparing 2020 data to a historic baseline. The water quality parameters examined included chlorophyll-a (CHL) and total suspended solids (TSS) concentrations, water clarity, and harmful algal bloom (HAB) extent. These parameters were investigated in two Great Lakes basins which experience significant anthropogenic pressure: the western basin of Lake Erie (WBLE) and Saginaw Bay in Lake Huron (SBLH). TSS concentrations in April 2020 were below the historic baseline in both basins, and largely remained low until September. SBLH also experienced elevated CHL concentrations in April which persisted through the summer. Additionally, the WBLE HAB extent was down in 2020 after an early end to the growing season. However, this investigation found that the COVID-19 shutdowns were likely not a direct driver of these short-term anomalies. Instead, recent trends in the indicators and co-occurring anomalies in hydrological and meteorological conditions (e.g., lake temperature, river discharge, and wind speed) appeared to be more responsible for the detected water quality changes. Future work will investigate whether the shutdowns have a long-term or delayed impact on Great Lakes water quality.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2272
Author(s):  
Grigoria Vasilopoulou ◽  
George Kehayias ◽  
Demetris Kletou ◽  
Periklis Kleitou ◽  
Vassilios Triantafyllidis ◽  
...  

The Mediterranean Sea has the highest accumulation of microplastics in the world. Although numerous studies about microplastic’s abundance and distribution have been conducted, the majority sampled surface waters. Especially for the Eastern Mediterranean, there is no information concerning the deeper strata. This study fills this gap by studying the microplastic spatial and temporal distribution along the coasts of Cyprus, utilizing zooplankton samples collected from the entire 0–50 m depth layer. The average microplastics’ abundance was 41.31 ± 22.41 items/m3 indicating that the Eastern Mediterranean seems to be much more polluted than the western basin. The fibers outnumbered the abundance of the fragments by a factor of ten. Most fibers were sized between 0.5 and 1.0 mm, and 81.24% were transparent. The average area of the fragments was ≤0.05 mm2, and most of them were hard-rounded (53.38%). The microplastics to zooplankton ratio ranged between 0.021 and 0.241. A positive correlation was found between the abundance of microplastics and the total zooplankton, especially the copepods. Studies of microplastics in zooplankton samples taken from the water column are expected to provide better insights into the role of these pollutants in marine ecosystems.


Harmful Algae ◽  
2021 ◽  
Vol 108 ◽  
pp. 102080
Author(s):  
Justin D. Chaffin ◽  
John F. Bratton ◽  
Edward M. Verhamme ◽  
Halli B. Bair ◽  
Amber A. Beecher ◽  
...  

Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 306
Author(s):  
Ehud Galili ◽  
Amos Salamon ◽  
Gil Gambash ◽  
Dov Zviely

Archaeological and geomorphological features, as well as traces left by tsunamis, earthquakes, and vertical earth-crust displacements, are used to identify sea-level and coastal changes. Such features may be displaced, submerged or eroded by natural processes and human activities. Thus, identifying ancient sea levels and coastal changes associated with such processes may be controversial and often leads to misinterpretations. We exemplify the use of sediment deposits and sea-level and coastline indicators by discussing the enigmatic demise of the Roman harbor of Caesarea, one of the greatest marine constructions built in antiquity, which is still debated and not fully understood. It was suggested that the harbor destruction was mainly the result of either tectonic subsidence associated with a local, active fault line, or as a result of an earthquake/tsunami that struck the harbor. Here we examine and reassess the deterioration of the harbor in light of historical records, and geological, geomorphological and archaeological studies of natural and man-made features associated with the harbor. We show that the alleged evidence of an earthquakes or tsunami-driven damage to the outer breakwaters is equivocal. There is no supporting evidence for the assumed tectonic, active fault, nor is there a reliable historic account of such a catastrophic destruction. It is suggested that geo-technic failure of the breakwater’s foundations caused by a series of annual winter storms was the main reason for the destruction and ultimate collapse of the western basin of the harbor. The breakwaters were constructed on unconsolidated sand that was later washed away by storm waves and sea currents that frequently hit the Israeli coast and undercut the breakwaters. The pounding effect of the waves could have contributed to the destruction by scouring and liquefying the sandy seabed underlying the foundations. Tsunamis that may have hit Caesarea could have added to the deterioration of the breakwaters, but did not constitute the main cause of its destruction.


Sign in / Sign up

Export Citation Format

Share Document