Kinematic data on major Variscan strike-slip faults and shear zones in the Polish Sudetes, northeast Bohemian Massif

1997 ◽  
Vol 134 (5) ◽  
pp. 727-739 ◽  
Author(s):  
P. ALEKSANDROWSKI ◽  
R. KRYZA ◽  
S. MAZUR ◽  
J. ŻABA

The still highly disputable terrane boundaries in the Sudetic segment of the Variscan belt mostly seem to follow major strike-slip faults and shear zones. Their kinematics, expected to place important constraints on the regional structural models, is discussed in some detail. The most conspicuous is the WNW–ESE Intra-Sudetic Fault Zone, separating several different structural units of the West Sudetes. It showed ductile dextral activity and, probably, displacement magnitude of the order of tens to hundreds kilometres, during late Devonian(?) to early Carboniferous times. In the late Carboniferous (to early Permian?), the sense of motion on the Intra-Sudetic Fault was reversed in a semi-brittle to brittle regime, with the left-lateral offset on the fault amounting to single kilometres. The north–south trending Niemcza and north-east–southwest Skrzynka shear zones are left-lateral, ductile features in the eastern part of the West Sudetes. Similarly oriented (northeast–southwest to NNE–SSW) regional size shear zones of as yet undetermined kinematics were discovered in boreholes under Cenozoic cover in the eastern part of the Sudetic foreland (the Niedźwiedź and Nysa-Brzeg shear zones). One of these is expected to represent the northern continuation of the major Stare Mesto Shear Zone in the Czech Republic, separating the geologically different units of the West and East Sudetes. The Rudawy Janowickie Metamorphic Unit, assumed in some reconstructions to comprise a mostly strike-slip terrane boundary, is characterized by ductile fabric developed in a thrusting regime, modified by a superimposed normal-slip extensional deformation. Thrusting-related deformational fabric was locally reoriented prior to the extensional event and shows present-day strike-slip kinematics in one of the sub-units. The Sudetic Boundary Fault, although prominent in the recent structure and topography of the region, was not active as a Variscan strike-slip fault zone. The reported data emphasize the importance of syn-orogenic strike-slip tectonics in the Sudetes. The recognized shear sense is compatible with a strike-slip model of the northeast margin of the Bohemian Massif, in which the Kaczawa and Góry Sowie Units underwent late Devonian–early Carboniferous southeastward long-distance displacement along the Intra-Sudetic Fault Zone from their hypothetical original position within the Northern Phyllite Zone and the Mid-German Crystalline High of the German Variscides, respectively, and were juxtaposed with units of different provenance southwest of the fault. The Intra-Sudetic Fault Zone, together with the Elbe Fault Zone further south, were subsequently cut in the east and their eastern segments were displaced and removed by the younger, early to late Carboniferous, NNE–SSW trending, transpressional Moldanubian–Stare Mesto Shear Zone.

Solid Earth ◽  
2018 ◽  
Vol 9 (2) ◽  
pp. 341-372 ◽  
Author(s):  
Jean-Baptiste P. Koehl ◽  
Steffen G. Bergh ◽  
Tormod Henningsen ◽  
Jan Inge Faleide

Abstract. The SW Barents Sea margin experienced a pulse of extensional deformation in the Middle–Late Devonian through the Carboniferous, after the Caledonian Orogeny terminated. These events marked the initial stages of formation of major offshore basins such as the Hammerfest and Nordkapp basins. We mapped and analyzed three major fault complexes, (i) the Måsøy Fault Complex, (ii) the Rolvsøya fault, and (iii) the Troms–Finnmark Fault Complex. We discuss the formation of the Måsøy Fault Complex as a possible extensional splay of an overall NE–SW-trending, NW-dipping, basement-seated Caledonian shear zone, the Sørøya–Ingøya shear zone, which was partly inverted during the collapse of the Caledonides and accommodated top–NW normal displacement in Middle to Late Devonian–Carboniferous times. The Troms–Finnmark Fault Complex displays a zigzag-shaped pattern of NNE–SSW- and ENE–WSW-trending extensional faults before it terminates to the north as a WNW–ESE-trending, NE-dipping normal fault that separates the southwesternmost Nordkapp basin in the northeast from the western Finnmark Platform and the Gjesvær Low in the southwest. The WNW–ESE-trending, margin-oblique segment of the Troms–Finnmark Fault Complex is considered to represent the offshore prolongation of a major Neoproterozoic fault complex, the Trollfjorden–Komagelva Fault Zone, which is made of WNW–ESE-trending, subvertical faults that crop out on the island of Magerøya in NW Finnmark. Our results suggest that the Trollfjorden–Komagelva Fault Zone dies out to the northwest before reaching the western Finnmark Platform. We propose an alternative model for the origin of the WNW–ESE-trending segment of the Troms–Finnmark Fault Complex as a possible hard-linked, accommodation cross fault that developed along the Sørøy–Ingøya shear zone. This brittle fault decoupled the western Finnmark Platform from the southwesternmost Nordkapp basin and merged with the Måsøy Fault Complex in Carboniferous times. Seismic data over the Gjesvær Low and southwesternmost Nordkapp basin show that the low-gravity anomaly observed in these areas may result from the presence of Middle to Upper Devonian sedimentary units resembling those in Middle Devonian, spoon-shaped, late- to post-orogenic collapse basins in western and mid-Norway. We propose a model for the formation of the southwesternmost Nordkapp basin and its counterpart Devonian basin in the Gjesvær Low by exhumation of narrow, ENE–WSW- to NE–SW-trending basement ridges along a bowed portion of the Sørøya-Ingøya shear zone in the Middle to Late Devonian–early Carboniferous. Exhumation may have involved part of a large-scale metamorphic core complex that potentially included the Lofoten Ridge, the West Troms Basement Complex and the Norsel High. Finally, we argue that the Sørøya–Ingøya shear zone truncated and decapitated the Trollfjorden–Komagelva Fault Zone during the Caledonian Orogeny and that the western continuation of the Trollfjorden–Komagelva Fault Zone was mostly eroded and potentially partly preserved in basement highs in the SW Barents Sea.


2020 ◽  
Author(s):  
Cengiz Zabcı ◽  
Taylan Sançar ◽  
Müge Yazıcı ◽  
Anke M. Friedrich ◽  
Naki Akçar

<p>Anatolia is part of the west-central Alpide plate-boundary zone, particularly where the deformation is characterized by the westward extrusion of this continental block between the Arabian-Eurasian collision in the east and the Hellenic Subduction in the west. Although, this motion mostly happens along the boundary structures, i.e., the North Anatolian and East Anatolian shear zones, there are multiple studies documenting the active deformation along NE-striking sinistral and NW-striking dextral strike-slip faults within the central and eastern parts of Anatolia. These secondary faults slice Anatolia into several pieces giving formation of the Malatya-Erzincan, Cappadocian and Central Anatolian slices from east to west, where their boundary geometries are strongly controlled by the weak zones, the Tethyan Suture Zones.</p><p>We compiled all geological slip-rate and palaeoseismological studies, which point out inhomogeneous magnitude of deformation along different sections of these secondary structures. The Central Anatolian Fault Zone, the westernmost NE-striking sinistral strike-slip structure and the western boundary between the Central Anatolia and Cappadocian slices, has an average horizontal slip-rate of about 1 to 1.5 mm/a for the last few tens of thousands of years. The earthquake recurrence of about 4500 years between two events revealed on the northern sections of the CAFZ also support this rate of deformation. However, the Malatya-Ovacık Fault Zone has a bimodal behaviour in terms of deformation rate, which is 2.5 times higher along its northern member, the Ovacık Fault (OF) than the southern one, the Malatya Fault (MF) (2.5 to 1 mm/a), respectively. This velocity difference between two distinct members of the same fault zone can be explained by the relative westward motion of slices where the OF makes the direct contact between the Central Anatolian and Malatya-Erzincan, and the MF delimits Cappadocian and Malatya-Erzincan slices. Although these structures, which are shallow and probably deform only the upper crust, are of having secondary importance, yet they are still capable of producing infrequent but strong earthquakes within this highly deforming convergent setting. This study is supported by TÜBİTAK projects no. 114Y227 and 114Y580.</p>


2017 ◽  
Author(s):  
Jean-Baptiste Koehl ◽  
Steffen G. Bergh ◽  
Tormod Henningsen ◽  
Jan-Inge Faleide

Abstract. The SW Barents Sea margin experienced a pulse of extensional deformation in the Middle-Late Devonian through the Carboniferous, after the Caledonian Orogeny terminated. These events marked the initial stages of formation of major offshore basins such as the Hammerfest and Nordkapp basins. We mapped and analyzed three major fault complexes, i) the Måsøy Fault Complex, ii) the Rolvsøya fault, iii) the Troms-Finnmark Fault Complex. We discuss the formation of the Måsøy Fault Complex as a possible extensional splay of an overall NE-SW trending, NW-dipping, basement-seated Caledonian shear zone, the Sørøya-Ingøya shear zone, which was partly inverted during the collapse of the Caledonides and accommodated top-to-the-NW normal displacement in Mid/Late Devonian-Carboniferous times. The Troms-Finnmark Fault Complex displays a zigzag-shaped pattern of NNE-SSW and ENE-WSW trending extensional faults before it terminates to the north as a WNW-ESE trending, NE-dipping normal fault that separates the southwesternmost Nordkapp basin in the northeast from the Finnmark Platform west and the Gjesvær Low in the southwest. The WNW-ESE trending, margin-oblique segment of the Troms-Finnmark Fault Complex is considered to represent the offshore prolongation of a major Neoproterozoic fault complex, the Trollfjord-Komagelv Fault Zone, which is made of WNW-ESE trending, subvertical faults that crop out on the island of Magerøya in NW Finnmark. Our results suggest that the Trollfjord-Komagelv Fault Zone dies out to the northwest before reaching the Finnmark Platform west. We propose an alternative model for the origin of the WNW-ESE trending fault segment of the Troms-Finnmark Fault Complex as a possible hard-linked, accommodation cross-fault that developed along the Sørøy-Ingøya shear zone. This brittle fault decoupled the Finnmark Platform west from the southwesternmost Nordkapp basin and merged with the Måsøy Fault Complex in Carboniferous times. Seismic data over the Gjesvær Low and southwesternmost Nordkapp basin show that the low-gravity anomaly observed in these areas may result from the presence of Mid/Late Devonian sedimentary units resembling Middle Devonian, spoon-shaped, late/post-orogenic collapse basins in western and mid Norway. We propose a model for the formation of the southwesternmost Nordkapp basin and its counterpart Devonian basin in the Gjesvær Low by exhumation of narrow, ENE-WSW to NE-SW trending basement ridges along a bowed portion of the Sørøya-Ingøya shear zone in the Mid/Late Devonian-early Carboniferous. Exhumation may have involved part of a large-scale metamorphic core complex that potentially included the Lofoten Ridge, the West Troms Basement Complex and the Norsel High. Finally, we argue that the Sørøya-Ingøya shear zone truncated and decapitated the Trollfjord-Komagelv Fault Zone during the Caledonian Orogeny and that the western continuation of the Trollfjord-Komagelv Fault Zone was mostly eroded and potentially partly preserved in basement highs in the SW Barents Sea.


2018 ◽  
Vol 176 (3) ◽  
pp. 492-504 ◽  
Author(s):  
Jiří Konopásek ◽  
Robert Anczkiewicz ◽  
Petr Jeřábek ◽  
Fernando Corfu ◽  
Eliška Žáčková

2020 ◽  
Vol 191 ◽  
pp. 2 ◽  
Author(s):  
Dominique Chardon ◽  
Ousmane Bamba ◽  
Kalidou Traoré

Shear zones of the Paleoproterozoic Eburnean accretionary Orogen (West African craton) are investigated by means of large-scale structural mapping. Regional scale (10-100 km) mapping was based on the aeromagnetic survey of Burkina Faso and craton-scale (1000 km) mapping on a compilation of fabric data. At both scales, shear zones are arranged as an anastomosed transpressional network that accommodated distributed shortening and lateral flow of the orogenic lithosphere between the converging Kénéma-Man and Congo Archean provinces. Structural interference patterns at both scales were due to three-dimensional partitioning of progressive transpressional deformation and interactions among shear zones that absorbed heterogeneities in the regional flow patterns while maintaining the connectivity of the shear zone network. Such orogen-scale kinematic patterns call for caution in using the deformation phase approach without considering the “bigger structural picture” and interpreting displacement history of individual shear zones in terms of plate kinematics. The West African shear zone pattern is linked to that of the Guiana shield through a new transatlantic correlation to produce an integrated kinematic model of the Eburnean-Transamazonian orogen.


2020 ◽  
Author(s):  
Ji-Hoon Kang

<p>The Yangsan Fault Zone (YFZ) of NNE trend and Ulsan Fault Zone (UFZ) of NNW trend are developed in the Gyeongsang Basin, the southern part of the Korean Peninsula, and many active faults and Quaternary faults (ATV and QTY Fs) have been found in these fault zones. The tectonic movement of the YFZ can be explained at least by two different strike-slip movements, named as D1 sinistral strike-slip and D2 dextral strike-slip, and then two different dip-slip movements, named as D3 conjugate reverse-slip and D4 Quaternary reverse-slip. The surfaces of D3 fault in basement rocks are extended those of D4 fault in the covering Quaternary deposits, like the other Quaternary faults within the YFZ. The D3 and D4 faults were formed under the same compression of (N)NW-(S)SE direction. After that, the active faults occurred in the Korean Peninsula under the compression of E-W direction. The ATV and QTY Fs thrust the Bulguksa igneous rocks of Late Cretaceous-Early Tertiary upon the Quaternary deposits or are developed within the Quaternary deposits in the UFZ, showing the reverse-slip sense of top-to-the west movement. This presentation is suggested the formation model of neotectonic fault zone in the UFZ on the basis of the various trends [(W)NW, N-S, (E)NE trends] of fault surfaces of the ATV and QTY Fs found in the UFZ, and the zigzag-form connecting line of their outcrop sites, and the deformation history (the N-S trending 1st reverse-slip faulting by the 1st E-W compression and associated the E-W trending strike-slip tear faulting, the N-S trending 2nd reverse-slip faulting by the 2nd E-W compression) of neotectonic fault zone in the Singye-ri valley around the UFZ, and the compressive arc-shaped lineaments which convex to the west reported in the YFZ.</p><p>Acknowledgements: This research was financially supported by a grant (2017-MPSS31-006) from the Research and Development of Active fault of Korean Peninsula funded by the Korean Ministry of the Interior and Safety, and by Ministry of public Administration and Security as Disaster Prevention Safety Human resource development Project.</p>


2017 ◽  
Vol 156 (3) ◽  
pp. 485-509 ◽  
Author(s):  
FRANTIŠEK VACEK ◽  
JIŘÍ ŽÁK

AbstractThe Ordovician to Middle Devonian Prague Basin, Bohemian Massif, represents the shallowest crust of the Variscan orogen corresponding toc.1–4 km palaeodepth. The basin was inverted and multiply deformed during the Late Devonian to early Carboniferous Variscan orogeny, and its structural inventory provides an intriguing record of complex geodynamic processes that led to growth and collapse of a Tibetan-type orogenic plateau. The northeastern part of the Prague Basin is a simple syncline cross-cut by reverse/thrust faults and represents a doubly vergent compressional fan accommodatingc.10–19 % ~NW–SE shortening, only minor syncline axis-parallel extension and significant crustal thickening. The compressional structures were locally overprinted by vertical shortening, kinematically compatible with ductile normal shear zones that exhumed deep crust in the orogen's interior atc. 346–337 Ma. On a larger scale, the deformation history of the Prague Syncline is consistent with building significant palaeoelevation during Variscan plate convergence. Based on a synthesis of finite deformation parameters observed across the upper crust in the centre of the Bohemian Massif, we argue for a differentiated within-plateau palaeotopography consisting of domains of local thickening alternating with topographic depressions over lateral extrusion zones. The plateau growth, involving such complex three-dimensional internal deformations, was terminated by its collapse driven by multiple interlinked processes including gravity, voluminous magma emplacement and thermal softening in the hinterland, and far-field plate-boundary forces resulting from the relative dextral motion of Gondwana and Laurussia.


Sign in / Sign up

Export Citation Format

Share Document