Early Carboniferous blueschist facies metamorphism in metapelites of the West Sudetes (Northern Saxothuringian Domain, Bohemian Massif)

2010 ◽  
Vol 28 (4) ◽  
pp. 361-379 ◽  
Author(s):  
E. ŽÁČKOVÁ ◽  
J. KONOPÁSEK ◽  
P. JEŘÁBEK ◽  
F. FINGER ◽  
J. KOŠLER
1997 ◽  
Vol 134 (5) ◽  
pp. 727-739 ◽  
Author(s):  
P. ALEKSANDROWSKI ◽  
R. KRYZA ◽  
S. MAZUR ◽  
J. ŻABA

The still highly disputable terrane boundaries in the Sudetic segment of the Variscan belt mostly seem to follow major strike-slip faults and shear zones. Their kinematics, expected to place important constraints on the regional structural models, is discussed in some detail. The most conspicuous is the WNW–ESE Intra-Sudetic Fault Zone, separating several different structural units of the West Sudetes. It showed ductile dextral activity and, probably, displacement magnitude of the order of tens to hundreds kilometres, during late Devonian(?) to early Carboniferous times. In the late Carboniferous (to early Permian?), the sense of motion on the Intra-Sudetic Fault was reversed in a semi-brittle to brittle regime, with the left-lateral offset on the fault amounting to single kilometres. The north–south trending Niemcza and north-east–southwest Skrzynka shear zones are left-lateral, ductile features in the eastern part of the West Sudetes. Similarly oriented (northeast–southwest to NNE–SSW) regional size shear zones of as yet undetermined kinematics were discovered in boreholes under Cenozoic cover in the eastern part of the Sudetic foreland (the Niedźwiedź and Nysa-Brzeg shear zones). One of these is expected to represent the northern continuation of the major Stare Mesto Shear Zone in the Czech Republic, separating the geologically different units of the West and East Sudetes. The Rudawy Janowickie Metamorphic Unit, assumed in some reconstructions to comprise a mostly strike-slip terrane boundary, is characterized by ductile fabric developed in a thrusting regime, modified by a superimposed normal-slip extensional deformation. Thrusting-related deformational fabric was locally reoriented prior to the extensional event and shows present-day strike-slip kinematics in one of the sub-units. The Sudetic Boundary Fault, although prominent in the recent structure and topography of the region, was not active as a Variscan strike-slip fault zone. The reported data emphasize the importance of syn-orogenic strike-slip tectonics in the Sudetes. The recognized shear sense is compatible with a strike-slip model of the northeast margin of the Bohemian Massif, in which the Kaczawa and Góry Sowie Units underwent late Devonian–early Carboniferous southeastward long-distance displacement along the Intra-Sudetic Fault Zone from their hypothetical original position within the Northern Phyllite Zone and the Mid-German Crystalline High of the German Variscides, respectively, and were juxtaposed with units of different provenance southwest of the fault. The Intra-Sudetic Fault Zone, together with the Elbe Fault Zone further south, were subsequently cut in the east and their eastern segments were displaced and removed by the younger, early to late Carboniferous, NNE–SSW trending, transpressional Moldanubian–Stare Mesto Shear Zone.


2018 ◽  
Vol 176 (3) ◽  
pp. 492-504 ◽  
Author(s):  
Jiří Konopásek ◽  
Robert Anczkiewicz ◽  
Petr Jeřábek ◽  
Fernando Corfu ◽  
Eliška Žáčková

2006 ◽  
Vol 306 (10) ◽  
pp. 846-873 ◽  
Author(s):  
D. A. Schneider ◽  
S. J. Zahniser ◽  
J. M. Glascock ◽  
S. M. Gordon ◽  
M. Manecki

2002 ◽  
Vol 201 (1) ◽  
pp. 133-155 ◽  
Author(s):  
D. Marheine ◽  
V. Kachlík ◽  
H. Maluski ◽  
F. Patočka ◽  
A. Żelaźniewicz

1989 ◽  
Vol 143 ◽  
pp. 21-45
Author(s):  
L Stemmerik ◽  
E Håkansson

A lithostratigraphic scheme is erected for the Lower Carboniferous to Triassic sediments of the Wandel Sea Basin, from Lockwood Ø in the west to Holm Land in the east. The scheme is based on the subdivision into the Upper Carboniferous - Lower Permian Mallemuk Mountain Group and the Upper Permian - Triassic Trolle Land Group. In addition the Upper Carboniferous Sortebakker Formation and the Upper Permian Kap Kraka Formation are defined. Three formations and four members are included in the Mallemuk Mountain Group. Lithostratigraphic units include: Kap Jungersen Formation (new) composed of interbedded limestones, sandstones and shales with minor gypsum - early Moscovian; Foldedal Formation composed of interbedded limestones and sandstones -late Moseovian to late Gzhelian; Kim Fjelde Formation composed of well bedded Iimestones - late Gzhelian to Kungurian. The Trolle Land Group includes three formations: Midnatfjeld Formation composed of dark shales, sandstones and limestones - Late Permian; Parish Bjerg Formation composed of a basal conglomeratic sandstone overlain by shales and sandstones - ?Early Triassic (Scythian); Dunken Formation composed of dark shales and sandstones - Triassic (Scythian-Anisian). The Sortebakker Formation (new) is composed of interbedded sandstones, shales and minor coal of floodplain origin. The age is Early Carboniferous. The Kap Kraka Formation (new) includes poorly known hematitic sandstones, conglomerates and shales of Late Permian age.


2009 ◽  
Vol 147 (3) ◽  
pp. 339-362 ◽  
Author(s):  
MICHAEL BRÖCKER ◽  
REINER KLEMD ◽  
ELLEN KOOIJMAN ◽  
JASPER BERNDT ◽  
ALEXANDER LARIONOV

AbstractU–Pb zircon geochronology and trace element analysis was applied to eclogites and (ultra)high-pressure granulites that occur as volumetrically subordinate rock bodies within orthogneisses of the Orlica-Śnieżnik complex, Bohemian Massif. Under favourable circumstances such data may help to unravel protolith ages and yet-undetermined aspects of the metamorphic evolution, for example, the time span over which eclogite-facies conditions were attained. By means of ion-probe and laser ablation techniques, a comprehensive database was compiled for samples collected from prominent eclogite and granulite occurrences. The 206Pb/238U dates for zircons of all samples show a large variability, and no single age can be calculated. The protolith ages remain unresolved due to the lack of coherent age groups at the upper end of the zircon age spectra. The spread in apparent ages is interpreted to be mainly caused by variable and possibly multi-stage Pb-loss. Further complexities are added by metamorphic zircon growth and re-equilibration processes, the unknown relevance of inherited components and possible mixing of different aged domains during analysis. A reliable interpretation of igneous crystallization ages is not yet possible. Previous studies and the new data document the importance of a Carboniferous metamorphic event at c. 340 Ma. The geological significance of this age group is controversial. Such ages have previously either been related to peak (U)HP conditions, the waning stages of eclogite-facies metamorphism or the amphibolite-facies overprint. This study provides new arguments for this discussion because, in both rock types, metamorphic zircon is characterized by very low total REE abundances, flat HREE patterns and the absence of an Eu anomaly. These features strongly suggest contemporaneous crystallization of zircon and garnet and strengthen interpretations proposing that the Carboniferous ages document late-stage eclogite-facies metamorphism, and not amphibolite-facies overprinting.


2017 ◽  
Vol 53 (5) ◽  
pp. 665-682
Author(s):  
František Veselovský ◽  
Lukáš Ackerman ◽  
Jan Pašava ◽  
Karel Žák ◽  
Eva Haluzová ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document