scholarly journals LINEAR WEINGARTEN HYPERSURFACES WITH BOUNDED MEAN CURVATURE IN THE HYPERBOLIC SPACE

2014 ◽  
Vol 57 (3) ◽  
pp. 653-663 ◽  
Author(s):  
CÍCERO P. AQUINO ◽  
HENRIQUE F. DE LIMA ◽  
MARCO ANTONIO L. VELÁSQUEZ

AbstractWe apply appropriate maximum principles in order to obtain characterization results concerning complete linear Weingarten hypersurfaces with bounded mean curvature in the hyperbolic space. By supposing a suitable restriction on the norm of the traceless part of the second fundamental form, we show that such a hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder, when its scalar curvature is positive, or to a spherical cylinder, when its scalar curvature is negative. Related to the compact case, we also establish a rigidity result.

2011 ◽  
Vol 54 (1) ◽  
pp. 67-75 ◽  
Author(s):  
QIN ZHANG

AbstractLet Mn be an n-dimensional closed hypersurface with constant mean curvature H satisfying |H| ≤ ϵ(n) in a unit sphere Sn+1(1), n ≤ 8 and S the square of the length of the second fundamental form of M. There exists a constant δ(n, H) > 0, which depends only on n and H such that if S0 ≤ S ≤ S0 + δ(n, H), then S ≡ S0 and M is isometric to a Clifford hypersurface, where ϵ(n) is a sufficiently small constant depending on n and $S_0=n+\frac{n^3}{2(n-1)}H^2+\frac{n(n-2)}{2(n-1)}\sqrt{n^2H^4+4(n-1)H^2}$.


2011 ◽  
Vol 22 (01) ◽  
pp. 131-143 ◽  
Author(s):  
GANGYI CHEN ◽  
HAIZHONG LI

Let M be an n-dimensional closed hypersurface with constant mean curvature H in a unit sphere Sn+1, n ≤ 8, and S the squared length of the second fundamental form of M. If |H| ≤ ε(n), then there exists a positive constant α(n, H), which depends only on n and H, such that if S0 ≤ S ≤ S0 + α(n, H), then S ≡ S0 and M is isometric to a Clifford hypersurface, where ε(n) is a positive constant depending only on n and [Formula: see text].


Author(s):  
Knut Smoczyk

AbstractWe study self-expanding solutions $M^{m}\subset \mathbb {R}^{n}$ M m ⊂ ℝ n of the mean curvature flow. One of our main results is, that complete mean convex self-expanding hypersurfaces are products of self-expanding curves and flat subspaces, if and only if the function |A|2/|H|2 attains a local maximum, where A denotes the second fundamental form and H the mean curvature vector of M. If the principal normal ξ = H/|H| is parallel in the normal bundle, then a similar result holds in higher codimension for the function |Aξ|2/|H|2, where Aξ is the second fundamental form with respect to ξ. As a corollary we obtain that complete mean convex self-expanders attain strictly positive scalar curvature, if they are smoothly asymptotic to cones of non-negative scalar curvature. In particular, in dimension 2 any mean convex self-expander that is asymptotic to a cone must be strictly convex.


2009 ◽  
Vol 51 (2) ◽  
pp. 413-423 ◽  
Author(s):  
QING-MING CHENG ◽  
YIJUN HE ◽  
HAIZHONG LI

AbstractLet M be an n-dimensional closed hypersurface with constant mean curvature H satisfying |H| ≤ ϵ(n) in a unit sphere Sn+1, n ≤ 7, and S the square of the length of the second fundamental form of M. There exists a constant δ(n, H) > 0, which depends only on n and H, such that if S0 ≤ S ≤ S0 + δ(n, H), then S ≡ S0 and M is isometric to a Clifford hypersurface, where ϵ(n) is a sufficiently small constant depending on n and $S_0=n+\frac{n^3}{2(n-1)}H^2+\frac{n(n-2)}{2(n-1)}\sqrt{n^2H^4+4(n-1)H^2}$.


Author(s):  
Ezequiel Barbosa ◽  
Franciele Conrado

In this work, we consider oriented compact manifolds which possess convex mean curvature boundary, positive scalar curvature and admit a map to $\mathbb {D}^{2}\times T^{n}$ with non-zero degree, where $\mathbb {D}^{2}$ is a disc and $T^{n}$ is an $n$ -dimensional torus. We prove the validity of an inequality involving a mean of the area and the length of the boundary of immersed discs whose boundaries are homotopically non-trivial curves. We also prove a rigidity result for the equality case when the boundary is strongly totally geodesic. This can be viewed as a partial generalization of a result due to Lucas Ambrózio in (2015, J. Geom. Anal., 25, 1001–1017) to higher dimensions.


Author(s):  
Chongzhen Ouyang ◽  
Zhenqi Li

AbstractThis paper investigates complete space-like submainfold with parallel mean curvature vector in the de Sitter space. Some pinching theorems on square of the norm of the second fundamental form are given


2015 ◽  
Vol 26 (02) ◽  
pp. 1550014 ◽  
Author(s):  
Uğur Dursun ◽  
Rüya Yeğin

We study submanifolds of hyperbolic spaces with finite type hyperbolic Gauss map. First, we classify the hyperbolic submanifolds with 1-type hyperbolic Gauss map. Then we prove that a non-totally umbilical hypersurface Mn with nonzero constant mean curvature in a hyperbolic space [Formula: see text] has 2-type hyperbolic Gauss map if and only if M has constant scalar curvature. We also classify surfaces with constant mean curvature in the hyperbolic space [Formula: see text] having 2-type hyperbolic Gauss map. Moreover we show that a horohypersphere in [Formula: see text] has biharmonic hyperbolic Gauss map.


2007 ◽  
Vol 09 (02) ◽  
pp. 183-200 ◽  
Author(s):  
YOUNG JIN SUH ◽  
HAE YOUNG YANG

In this paper, we study n-dimensional compact minimal hypersurfaces in a unit sphere Sn+1(1) and give an answer for S. S. Chern's conjecture. We have shown that [Formula: see text] if S > n, and prove that an n-dimensional compact minimal hypersurface with constant scalar curvature in Sn+1(1) is a totally geodesic sphere or a Clifford torus if [Formula: see text], where S denotes the squared norm of the second fundamental form of this hypersurface.


2020 ◽  
Vol 31 (05) ◽  
pp. 2050035
Author(s):  
Yong Luo ◽  
Hongbing Qiu

By using the integral method, we prove a rigidity theorem for spacelike self-shrinkers in pseudo-Euclidean space under a minor growth condition in terms of the mean curvature and the second fundamental form, which generalizes Theorem 1.1 in [H. Q. Liu and Y. L. Xin, Some Results on Space-Like Self-Shrinkers, Acta Math. Sin. (Engl. Ser.) 32(1) (2016) 69–82].


Sign in / Sign up

Export Citation Format

Share Document