Growth, development and yield of bambara groundnut (Vigna subterranea) in response to soil moisture

1996 ◽  
Vol 126 (3) ◽  
pp. 307-318 ◽  
Author(s):  
S. T. Collinson ◽  
S. N. Azam-Ali ◽  
K. M. Chavula ◽  
D. A. Hodson

SUMMARYStands of bambara groundnut (Vigna subterranea (L.) Verde.) were grown in five controlledenvironment glasshouses at the Tropical Crops Research Unit, University of Nottingham, Sutton Bonington Campus, in 1990. Five soil moisture regimes were imposed (one per house), from fully irrigated each week (treatment A), to no irrigation after crop establishment at 35 days after sowing (DAS) (treatment E). Decreasing the amount of water applied resulted in a decline in total dry matter production and harvest index, and a reduction in pod yield from 412 (treatment B) to 0·041 ha-1 (treatment E) at 125 DAS. A maximum leaf area index of 5–4 was achieved by treatments B and C at 90 DAS, resulting in a fractional interception of c. 0·8 of incoming radiation. Total accumulated radiation interception values were 749, 693, 688, 618 and 554 MJ m-2 for treatments A, B, C, D and E, respectively. The efficiency of conversion of the radiation intercepted into dry matter was reduced from 1·41 to 0·50 g MJ-1 by drought.

1984 ◽  
Vol 20 (2) ◽  
pp. 161-170
Author(s):  
D. Boobathi Babu ◽  
S. P. Singh

SUMMARYThe effects of irrigation and spraying of transpiration suppressants on growth and nutrient uptake by spring sorghum (CSH 6) have been investigated. Crop growth, measured by plant-height, leaf area index and dry matter production, and uptake of N, P and K increased with more frequent irrigation and in response to the spraying of transpiration suppressants. Foliar applications of atrazine at 200 g ha−1 and CCC at 300 ml ha−1 proved to be the best in this NW Indian location.


1984 ◽  
Vol 20 (2) ◽  
pp. 161-170 ◽  
Author(s):  
D. Boobathi Babu ◽  
S. P. Singh

SUMMARYThe effects of irrigation and spraying of transpiration suppressants on growth and nutrient uptake by spring sorghum (CSH 6) have been investigated. Crop growth, measured by plant-height, leaf area index and dry matter production, and uptake of N, P and K increased with more frequent irrigation and in response to the spraying of transpiration suppressants. Foliar applications of atrazine at 200 g ha−1 and CCC at 300 ml ha−1 proved to be the best in this NW Indian location.


1999 ◽  
Vol 133 (2) ◽  
pp. 151-157 ◽  
Author(s):  
S. T. COLLINSON ◽  
J. BERCHIE ◽  
S. N. AZAM-ALI

Three landraces of bambara groundnut (Vigna subterranea (L.) Verdc.) were grown as crop stands in controlled environment glasshouses at the Tropical Crops Research Unit, University of Nottingham, in 1995. Two soil moisture treatments were imposed: irrigated to 90% field capacity each week and irrigated to 60% field capacity until establishment (27 days after sowing) with no further irrigation. Seasonal mean fractional interception varied between 0·20–0·37 for the droughted treatments and 0·62–0·74 for the irrigated treatments, resulting in cumulative intercepted radiation of 228–350 MJ/m2 and 662–794 MJ/m2, respectively. The maximum total dry matter (DM) produced was 5·8 t/ha at final harvest (145 days after sowing) with a pod yield of 2·7 t/ha. Under moisture stress there was little difference in DM production between landraces, with the highest total DM of 1·1 t/ha and a pod yield of 0·05 t/ha, representing a harvest index of 0·05 compared with an average of 0·46 for the irrigated treatments. The conversion coefficient was reduced from 1·00 under irrigation to 0·51 g DM/MJ radiation intercepted by soil moisture stress. Two of the landraces showed adaptive mechanisms to avoid drought; these are discussed in relation to maximizing seasonal radiation interception.


1999 ◽  
Vol 133 (2) ◽  
pp. 159-166 ◽  
Author(s):  
M. BRINK

A semi-controlled environment study was conducted from May to September 1996 in Wageningen, The Netherlands, to investigate the interaction between growth and development in bambara groundnut (Vigna subterranea) and the influence of photoperiod on dry matter partitioning. The experimental design was a split-plot with four photoperiods (10·5, 11·8, 13·2 and 14·5 h/d) and two light treatments: unshaded and shaded (42% light reduction). The selection used was ‘DipC94’ from Botswana. The dates of 50% flowering and 50% podding were determined, and samples of plants were harvested at 22, 36, 50, 64, 78, 92, 106 and 120 days after sowing. Total dry matter production was 41% lower in the shaded treatment than in the unshaded treatment, but the rates of progress from sowing to flowering and flowering to podding decreased by only 3 and 12% respectively. This suggests that growth and development in bambara groundnut are largely independent. Photoperiod influenced dry matter partitioning indirectly, through its influence on the onset of podding. There were, however, no strong direct photoperiod effects on dry matter partitioning, either before or after the onset of podding.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 426A-426
Author(s):  
J.C. Gilsanz ◽  
M. Duran ◽  
R. Maiques ◽  
F. Bascans ◽  
C. Garcia

The objective of this work was to establish the dry-matter production and yield at different irrigation levels and moments of water application. An early cultivar, INIA-Sandu, was transplanted in Nov. 1996. Treatments were a combination of: no irrigation, irrigation at 25 kPa and 75 kPa of soil moisture tension during the first 60, 30 to 90, 60 to 120 days, and during all the cycle after crop establishment. Sequential samples were done throughout the growth cycle. The parameters evaluated were fresh and dry weight of leaves, stems, and roots. At the end of the crop cycle, yield was determined. Irrigation levels and early applications affected weight of leaves, stems, and roots. Yield was greater at early water applications during the growth cycle. Lower soil moisture tensions tend to have greater yields.


2000 ◽  
Vol 36 (1) ◽  
pp. 1-13 ◽  
Author(s):  
S. T. COLLINSON ◽  
K. P. SIBUGA ◽  
A. J. P. TARIMO ◽  
S. N. AZAM-ALI

Sequential sowings were carried out at Dodoma, Tanzania, to examine the effect of changing climatic parameters on the growth and yield of bambara groundnut (Vigna subterranea). Sowings took place on 4 January, 4 February and 4 March 1994; 4 and 24 January, and 13 February 1995; 4 and 21 January, and 7 February 1996. Rainfall during the crop life cycle varied from 163 to 611 mm, mean photoperiod from 11.82 to 12.09 h d−1 and mean temperature from 22.6 to 24.4 °C. In 1994, the highest pod yields were achieved at the earliest sowing date, with a maximum of 2.87 and 1.42 t ha−1 for the red- and cream-seeded landraces, representing pod harvest indices of 0.56 and 0.34 respectively. A 30-d delay in sowing caused >60% reduction in pod yield, and a further 30-d delay resulted in no pods at all. Similarly, in 1995 successive delays in sowing caused dramatic yield declines, and the maximum yield was much lower, at 0.44 t ha−1. In 1996 there was no significant difference in pod yields between the two early sowing dates for the red-seeded landrace and yields were again lower than in 1994 with a maximum of 1.02 t ha−1. Differences in dry matter production between sowings and years were attributed mainly to differences in the amount and distribution of rainfall and to declining temperatures towards the end of the season; however, partitioning to pods was remarkably consistent across sowings.


2013 ◽  
Vol 50 (1) ◽  
pp. 72-89 ◽  
Author(s):  
IBRAHEEM AL SHAREEF ◽  
DEBBIE SPARKES ◽  
SAYED AZAM-ALI

SUMMARYThe effect of drought and temperature on the growth and development of bambara groundnut (Vigna subterranea (L.) Verdc.) was studied in controlled environment glasshouses in the United Kingdom. There were two landraces, S19-3 (from a hot, dry environment; Namibia) and Uniswa Red (from a cool, wet environment; Swaziland), two temperature regimes (23 °C and 33 °C) and three watering regimes (2006; fully irrigated), 2007 (drought imposed at 77 days after sowing (DAS)) and 2008 (drought imposed at 30 DAS)). Bambara groundnut responded to drought by slowing the rate of leaf area expansion and reducing final canopy size and total dry matter (TDM). Drought also caused significant reductions in pod dry matter, pod numbers and harvest index (HI), leading to a decrease in final yield that was different between landraces. Throughout the three growing seasons, landraces grown at 33 °C produced more TDM than the landraces grown at 23 °C. The two landraces differed in their phenology; S19-3 exhibited a reduced phenology where leaf numbers started to decrease before Uniswa Red at both temperatures, while Uniswa Red maintained the longest life cycle. The lowest pod yield was produced by Uniswa Red in 2008 at 33 °C (maximum of 35.5 gm−2), while S19-3 produced a minimum pod yield of 56.6 gm−2 at 33 °C, also in 2008. However, both landraces produced considerably more pod yield at 23 °C throughout the three growing seasons (minimum of 151 gm−2 and 162 gm−2 for Uniswa Red and S19-3, respectively). Under moderate drought, S19-3 at 33 °C gave the highest pod yield (365 gm−2) among the treatments throughout the three growing seasons and maintained HI better under drought. Despite being from a hot, dry environment, S19-3 also performed well at low temperature, which indicates the adaptation of S19-3 to low temperature that it also experiences in the country of origin.


1994 ◽  
Vol 51 (3) ◽  
pp. 430-435 ◽  
Author(s):  
S.S.S. Nogueira ◽  
V. Nagai ◽  
N.R. Braga ◽  
M. Do C.S.S. Novo ◽  
M.B.P. Camargo

An experiment to study the growing pattern of a chickpea variety, IAC-Marrocos, was carried out at the Monte Alegre Experimental Station, SP, during 1987 and 1988. The dry matter production of all parts of the plant, as well the leaf area index, were weekly evaluated. Exponential quadratic models of regression were adjusted to total dry matter, leaf dry matter and leaf area index, and a linear model to dry matter of grain. Based on the growth analysis it was concluded that the chickpea is a rustic eatable plant that can be recommended as an alternative winter crop for similar climatic conditions as those of the experiment.


1972 ◽  
Vol 23 (6) ◽  
pp. 945 ◽  
Author(s):  
JF Angus ◽  
R Jones ◽  
JH Wilson

Under conditions of adequate moisture an erect-leaf barley cultivar, Lenta, responded to an increase in density (resulting from doubling of the sowing rate) with increases in dry matter production and in grain yield, whereas the cultivar Research, which has long lax leaves, responded with decreases in dry matter production and yield. In a study of canopy structure and its effects on light interception and utilization, it was found that in Research, with a leaf area index (LAI) of 6.1, the leaves were concentrated near the canopy surface and a relatively small proportion of the above-crop light penetrated through this layer. The net crop photosynthesis of this canopy (measured in a field assimilation chamber) was 3.8 g CO2/m2.hr when visible radiation was 313 W/m2. With Lenta (LAI 7.0) on the other hand, leaves were concentrated in the middle layers of the canopy and the light was more evenly distributed throughout the canopy. The net crop photosynthesis with the same radiation as for Research was 4.3 g CO2/m2.hr. The relative rates of photosynthesis at various levels in the canopies were determined by introducing 14CO2 into the assimilation chambers enclosing the cultivars and observing where the 14C was fixed. With Research most of it was localized near the canopy surface while with Lenta most of it was near the centre of the canopy. Of the 14CO2 taken up, 7 % was fixed in the leaf sheaths of Research and 12% in those of Lenta.


1984 ◽  
Vol 20 (3) ◽  
pp. 215-224 ◽  
Author(s):  
S. N. Azam-Ali ◽  
P. J. Gregory ◽  
J. L. Monteith

SUMMARYPearl millet was grown on stored water at Niamey, Niger, using three row spacings. Water extraction based on neutron probe readings was compared with crop transpiration using a porometer and allied measurements. Between 23 and 52 days after sowing, plants at the narrow and medium spacings used about 77 and 100 mm of water, respectively, and those at the wide spacing used between 59 and 75 mm. Estimates of seasonal crop evaporation from leaf resistances and from the green leaf area index (GLAI) of the crops were 103, 130 and 123 mm for the narrow, medium and wide spacings, respectively. The water use per unit of dry weight produced was similar for both narrow and medium spacings but water was used more efficiently in the wide spacing. Dry weight increased in proportion to intercepted radiation with the same efficiency (1·3 g MJ−1) irrespective of spacing.


Sign in / Sign up

Export Citation Format

Share Document