scholarly journals Wetting failure and contact line dynamics in a Couette flow

2008 ◽  
Vol 614 ◽  
pp. 471-493 ◽  
Author(s):  
M. SBRAGAGLIA ◽  
K. SUGIYAMA ◽  
L. BIFERALE

Liquid–liquid wetting failure is investigated in a two-dimensional Couette system with two immiscible fluids of arbitrary viscosity. The problem is solved exactly using a sharp interface treatment of hydrodynamics (lubrication theory) as a function of the control parameters – capillary number, viscosity ratio and separation of scale – i.e. the slip length versus the macroscopic size of the system. The transition at a critical capillary number, from a stationary to a non-stationary interface, is studied while changing the control parameters. Comparisons with similar existing analyses for other geometries, such as the Landau–Levich problem, are also carried out. A numerical method of analysis is also presented, based on diffuse interface models obtained from multiphase extensions of the lattice Boltzmann equation. Sharp interface and diffuse interface models are quantitatively compared, indicating the correct limit of applicability of the diffuse interface models.

2010 ◽  
Vol 645 ◽  
pp. 279-294 ◽  
Author(s):  
PENGTAO YUE ◽  
CHUNFENG ZHOU ◽  
JAMES J. FENG

Diffuse-interface models may be used to compute moving contact lines because the Cahn–Hilliard diffusion regularizes the singularity at the contact line. This paper investigates the basic questions underlying this approach. Through scaling arguments and numerical computations, we demonstrate that the Cahn–Hilliard model approaches a sharp-interface limit when the interfacial thickness is reduced below a threshold while other parameters are fixed. In this limit, the contact line has a diffusion length that is related to the slip length in sharp-interface models. Based on the numerical results, we propose a criterion for attaining the sharp-interface limit in computing moving contact lines.


2012 ◽  
Vol 22 (03) ◽  
pp. 1150013 ◽  
Author(s):  
HELMUT ABELS ◽  
HARALD GARCKE ◽  
GÜNTHER GRÜN

A new diffuse interface model for a two-phase flow of two incompressible fluids with different densities is introduced using methods from rational continuum mechanics. The model fulfills local and global dissipation inequalities and is frame indifferent. Moreover, it is generalized to situations with a soluble species. Using the method of matched asymptotic expansions we derive various sharp interface models in the limit when the interfacial thickness tends to zero. Depending on the scaling of the mobility in the diffusion equation, we either derive classical sharp interface models or models where bulk or surface diffusion is possible in the limit. In the latter case a new term resulting from surface diffusion appears in the momentum balance at the interface. Finally, we show that all sharp interface models fulfill natural energy inequalities.


2015 ◽  
Vol 788 ◽  
pp. 209-227 ◽  
Author(s):  
H. Kusumaatmaja ◽  
E. J. Hemingway ◽  
S. M. Fielding

We reconcile two scaling laws that have been proposed in the literature for the slip length associated with a moving contact line in diffuse interface models, by demonstrating each to apply in a different regime of the ratio of the microscopic interfacial width $l$ and the macroscopic diffusive length $l_{D}=(M{\it\eta})^{1/2}$, where ${\it\eta}$ is the fluid viscosity and $M$ the mobility governing intermolecular diffusion. For small $l_{D}/l$ we find a diffuse interface regime in which the slip length scales as ${\it\xi}\sim (l_{D}l)^{1/2}$. For larger $l_{D}/l>1$ we find a sharp interface regime in which the slip length depends only on the diffusive length, ${\it\xi}\sim l_{D}\sim (M{\it\eta})^{1/2}$, and therefore only on the macroscopic variables ${\it\eta}$ and $M$, independent of the microscopic interfacial width $l$. We also give evidence that modifying the microscopic interfacial terms in the model’s free energy functional appears to affect the value of the slip length only in the diffuse interface regime, consistent with the slip length depending only on macroscopic variables in the sharp interface regime. Finally, we demonstrate the dependence of the dynamic contact angle on the capillary number to be in excellent agreement with the theoretical prediction of Cox (J. Fluid Mech., vol. 168, 1986, p. 169), provided we allow the slip length to be rescaled by a dimensionless prefactor. This prefactor appears to converge to unity in the sharp interface limit, but is smaller in the diffuse interface limit. The excellent agreement of results obtained using three independent numerical methods, across several decades of the relevant dimensionless variables, demonstrates our findings to be free of numerical artefacts.


2013 ◽  
Vol 73 (4) ◽  
pp. 344-361 ◽  
Author(s):  
S. Aland ◽  
S. Boden ◽  
A. Hahn ◽  
F. Klingbeil ◽  
M. Weismann ◽  
...  

2018 ◽  
Vol 859 ◽  
pp. 308-320 ◽  
Author(s):  
Peng Gao ◽  
Ao Liu ◽  
James J. Feng ◽  
Hang Ding ◽  
Xi-Yun Lu

Liquid films can be entrained when the dewetting velocity attains a threshold, and this dynamical wetting transition has been well studied in the situation of plane substrates. We investigate the forced dewetting in a capillary tube using diffuse-interface simulations and lubrication analysis, focusing on the onset of wetting transition and subsequent interface evolution. Results show that the meniscus remains stable when the displacing rate is below a threshold, beyond which film entrainment occurs and eventually leads to the formation of Taylor bubbles separated by liquid slugs, as has also been observed in the recent experiments of Zhao et al. (Phys. Rev. Lett., vol. 120, 2018, 084501). We derive an analytical solution of the critical capillary number, and demonstrate that the wetting transition is accompanied by a vanishing apparent contact angle and an abrupt drop of the contact-line velocity. Both the bubble and slug lengths are found to depend on the capillary number and the wettability of the wall. A theoretical formula for the bubble length is also proposed and compares favourably with numerical and experimental results.


Author(s):  
Eslam Ezzatneshan ◽  
Reza Goharimehr

In the present study, a pore-scale multicomponent lattice Boltzmann method (LBM) is employed for the investigation of the immiscible-phase fluid displacement in a homogeneous porous medium. The viscous fingering and the stable displacement regimes of the invading fluid in the medium are quantified which is beneficial for predicting flow patterns in pore-scale structures, where an experimental study is extremely difficult. Herein, the Shan-Chen (S-C) model is incorporated with an appropriate collision model for computing the interparticle interaction between the immiscible fluids and the interfacial dynamics. Firstly, the computational technique is validated by a comparison of the present results obtained for different benchmark flow problems with those reported in the literature. Then, the penetration of an invading fluid into the porous medium is studied at different flow conditions. The effect of the capillary number (Ca), dynamic viscosity ratio (M), and the surface wettability defined by the contact angle (θ) are investigated on the flow regimes and characteristics. The obtained results show that for M<1, the viscous fingering regime appears by driving the invading fluid through the pore structures due to the viscous force and capillary force. However, by increasing the dynamic viscosity ratio and the capillary number, the invading fluid penetrates even in smaller pores and the stable displacement regime occurs. By the increment of the capillary number, the pressure difference between the two sides of the porous medium increases, so that the pressure drop Δp along with the domain at θ=40∘ is more than that of computed for θ=80∘. The present study shows that the value of wetting fluid saturation Sw at θ=40∘ is larger than its value computed with θ=80∘ that is due to the more tendency of the hydrophilic medium to absorb the wetting fluid at θ=40∘. Also, it is found that the magnitude of Sw computed for both the contact angles is decreased by the increment of the viscosity ratio from Log(M)=−1 to 1. The present study demonstrates that the S-C LBM is an efficient and accurate computational method to quantitatively estimate the flow characteristics and interfacial dynamics through the porous medium.


Sign in / Sign up

Export Citation Format

Share Document