Wetting failure and contact line dynamics in a Couette flow
Liquid–liquid wetting failure is investigated in a two-dimensional Couette system with two immiscible fluids of arbitrary viscosity. The problem is solved exactly using a sharp interface treatment of hydrodynamics (lubrication theory) as a function of the control parameters – capillary number, viscosity ratio and separation of scale – i.e. the slip length versus the macroscopic size of the system. The transition at a critical capillary number, from a stationary to a non-stationary interface, is studied while changing the control parameters. Comparisons with similar existing analyses for other geometries, such as the Landau–Levich problem, are also carried out. A numerical method of analysis is also presented, based on diffuse interface models obtained from multiphase extensions of the lattice Boltzmann equation. Sharp interface and diffuse interface models are quantitatively compared, indicating the correct limit of applicability of the diffuse interface models.