immiscible fluids
Recently Published Documents


TOTAL DOCUMENTS

636
(FIVE YEARS 140)

H-INDEX

49
(FIVE YEARS 5)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Nehad Ali Shah ◽  
Hussam Alrabaiah ◽  
Dumitru Vieru ◽  
Se-Jin Yook

AbstractThe unsteady, magneto-hydrodynamic generalized Couette flows of two immiscible fluids in a rectangular channel with isothermal walls under the influence of an inclined magnetic field and an axial electric field have been investigated. Both fluids are considered electrically conducting and the solid boundaries are electrically insulated. Approximate analytical solutions for the velocity, induced magnetic, and temperature fields have been determined using the Laplace transform method along with the numerical Stehfest's algorithm for the inversion of the Laplace transforms. Also, for the nonlinear differential equation of energy, a numerical scheme based on the finite differences has been developed. A particular case has been numerically and graphically studied to show the evolution of the fluid velocity, induced magnetic field, and viscous dissipation in both flow regions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aman Raj ◽  
Ashwani Kumar ◽  
Joanna Felicity Dames

Pesticides are used indiscriminately all over the world to protect crops from pests and pathogens. If they are used in excess, they contaminate the soil and water bodies and negatively affect human health and the environment. However, bioremediation is the most viable option to deal with these pollutants, but it has certain limitations. Therefore, harnessing the role of microbial biosurfactants in pesticide remediation is a promising approach. Biosurfactants are the amphiphilic compounds that can help to increase the bioavailability of pesticides, and speeds up the bioremediation process. Biosurfactants lower the surface area and interfacial tension of immiscible fluids and boost the solubility and sorption of hydrophobic pesticide contaminants. They have the property of biodegradability, low toxicity, high selectivity, and broad action spectrum under extreme pH, temperature, and salinity conditions, as well as a low critical micelle concentration (CMC). All these factors can augment the process of pesticide remediation. Application of metagenomic and in-silico tools would help by rapidly characterizing pesticide degrading microorganisms at a taxonomic and functional level. A comprehensive review of the literature shows that the role of biosurfactants in the biological remediation of pesticides has received limited attention. Therefore, this article is intended to provide a detailed overview of the role of various biosurfactants in improving pesticide remediation as well as different methods used for the detection of microbial biosurfactants. Additionally, this article covers the role of advanced metagenomics tools in characterizing the biosurfactant producing pesticide degrading microbes from different environments.


2021 ◽  
Vol 932 ◽  
Author(s):  
Rui Han ◽  
A-Man Zhang ◽  
Sichao Tan ◽  
Shuai Li

We experimentally, numerically and theoretically investigate the nonlinear interaction between a cavitation bubble and the interface of two immiscible fluids (oil and water) on multiple time scales. The underwater electric discharge method is utilized to generate a cavitation bubble near or at the interface. Both the bubble dynamics on a short time scale and the interface evolution on a much longer time scale are recorded via high-speed photography. Two mechanisms are found to contribute to the fluid mixing in our system. First, when a bubble is initiated in the oil phase or at the interface, an inertia-dominated high-speed liquid jet generated from the collapsing bubble penetrates the water–oil interface, and consequently transports fine oil droplets into the water. The critical standoff parameter for jet penetration is found to be highly dependent on the density ratio of the two fluids. Furthermore, the pinch-off of an interface jet produced long after the bubble dynamics stage is reckoned as the second mechanism, carrying water droplets into the oil bulk. The dependence of the bubble jetting behaviours and interface jet dynamics on the governing parameters is systematically studied via experiments and boundary integral simulations. Particularly, we quantitatively demonstrate the respective roles of surface tension and viscosity in interface jet dynamics. As for a bubble initiated at the interface, an extended Rayleigh–Plesset model is proposed that well predicts the asymmetric dynamics of the bubble, which accounts for a faster contraction of the bubble top and a downward liquid jet.


2021 ◽  
Vol 10 (4) ◽  
pp. 552-563
Author(s):  
Rajesh Kumar Chandrawat ◽  
Varun Joshi ◽  
O. Anwar Bég

The dynamics of the interaction between immiscible fluids is relevant to numerous complex flows in nature and industry, including lubrication and coating processes, oil extraction, physicochemical separation techniques, etc. One of the most essential components of immiscible flow is the fluid interface, which must be consistently monitored. In this article, the unsteady flow of two immiscible fluids i.e., an Eringen micropolar and Newtonian liquid is considered in a horizontal channel. Despite the no-slip and hyper-stick shear stress condition at the channel edge, it is accepted that the liquid interface is dynamic, migrating from one position to the next and possibly get absolute change; as a result, The CS (continuum surface) model is integrated with the single moment equation based on the VOF (volume of fluid) approach to trace the interface. The immiscible fluids are considered to flow under three applied pressure gradients (constant, decaying, and periodic) and flow is analyzed under seamless shear stress over the entire interface. The modified cubic b-spline differential quadrature method (MCB-DQM) is used to solve the modeled coupled partial differential equations for the fluid interface evolution. The advection and tracking of the interface with time, wave number, and amplitude are illustrated through graphs. It is observed that the presence of micropolar parameters affects the interface with time. The novelty of the current study is that previous studies (which considered the smooth and unstable movement of the micropolar fluid, the steady stream of two immiscible fluids, and interface monitoring through different modes) are extended and generalized to consider the time-dependent flow of two immiscible fluids namely Eringen micropolar and Newtonian with a moving interface in a horizontal channel. For the decaying pressure gradient case, which requires more time to achieve the steady-state, the peak of the waves resembles those for the constant pressure gradient case. The interface becomes steady for a more extensive time when a constant pressure gradient is applied. The interface becomes stable quickly with time as the micropolar parameter is decreased for the constant pressure gradient case i.e., weaker micropolar fluids encourage faster stabilization of the interface. With periodic pressure gradient, the interface takes more time to stabilize, and the crest of the waves is significantly higher in amplitude compared to the constant and decaying pressure cases. The simulations demonstrate the excellent ability of MCB-DQM to analyze complex interfacial immiscible flows.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sergey G. Skripkin ◽  
Bulat R. Sharifullin ◽  
Igor V. Naumov ◽  
Vladimir N. Shtern

AbstractLooking for an optimal flow shape for culture growth in vortex bioreactors, an intriguing and impressive structure has been observed that mimics the strong swirling flows in the atmosphere (tornado) and ocean (waterspout). To better understand the flow nature and topology, this experimental study explores the development of vortex breakdown (VB) in a lab-scale swirling flow of two immiscible fluids filling a vertical cylindrical container. The rotating bottom disk drives the circulation of both fluids while the sidewall is stationary. The container can be either sealed with the still top disk (SC) or open (OC). As the rotation strength (Re) increases, a new circulation cell occurs in each fluid—the dual VB. In case SC, VB first emerges in the lower fluid at Re = 475 and then in the upper fluid at Re = 746. In case OC, VB first emerges in the upper fluid at Re = 524 and then in the lower fluid at Re = 538. The flow remains steady and axisymmetric with the interface and the free surface being just slightly deformed in the studied range of Re. Such two-VB swirling flows can provide efficient mixing in aerial or two-fluid bioreactors.


Author(s):  
Eslam Ezzatneshan ◽  
Reza Goharimehr

In the present study, a pore-scale multicomponent lattice Boltzmann method (LBM) is employed for the investigation of the immiscible-phase fluid displacement in a homogeneous porous medium. The viscous fingering and the stable displacement regimes of the invading fluid in the medium are quantified which is beneficial for predicting flow patterns in pore-scale structures, where an experimental study is extremely difficult. Herein, the Shan-Chen (S-C) model is incorporated with an appropriate collision model for computing the interparticle interaction between the immiscible fluids and the interfacial dynamics. Firstly, the computational technique is validated by a comparison of the present results obtained for different benchmark flow problems with those reported in the literature. Then, the penetration of an invading fluid into the porous medium is studied at different flow conditions. The effect of the capillary number (Ca), dynamic viscosity ratio (M), and the surface wettability defined by the contact angle (θ) are investigated on the flow regimes and characteristics. The obtained results show that for M<1, the viscous fingering regime appears by driving the invading fluid through the pore structures due to the viscous force and capillary force. However, by increasing the dynamic viscosity ratio and the capillary number, the invading fluid penetrates even in smaller pores and the stable displacement regime occurs. By the increment of the capillary number, the pressure difference between the two sides of the porous medium increases, so that the pressure drop Δp along with the domain at θ=40∘ is more than that of computed for θ=80∘. The present study shows that the value of wetting fluid saturation Sw at θ=40∘ is larger than its value computed with θ=80∘ that is due to the more tendency of the hydrophilic medium to absorb the wetting fluid at θ=40∘. Also, it is found that the magnitude of Sw computed for both the contact angles is decreased by the increment of the viscosity ratio from Log(M)=−1 to 1. The present study demonstrates that the S-C LBM is an efficient and accurate computational method to quantitatively estimate the flow characteristics and interfacial dynamics through the porous medium.


Sign in / Sign up

Export Citation Format

Share Document