scholarly journals Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection

2010 ◽  
Vol 643 ◽  
pp. 495-507 ◽  
Author(s):  
RICHARD J. A. M. STEVENS ◽  
ROBERTO VERZICCO ◽  
DETLEF LOHSE

Results from direct numerical simulation (DNS) for three-dimensional Rayleigh–Bénard convection in a cylindrical cell of aspect ratio 1/2 and Prandtl number Pr=0.7 are presented. They span five decades of Rayleigh number Ra from 2 × 106 to 2 × 1011. The results are in good agreement with the experimental data of Niemela et al. (Nature, vol. 404, 2000, p. 837). Previous DNS results from Amati et al. (Phys. Fluids, vol. 17, 2005, paper no. 121701) showed a heat transfer that was up to 30% higher than the experimental values. The simulations presented in this paper are performed with a much higher resolution to properly resolve the plume dynamics. We find that in under-resolved simulations the hot (cold) plumes travel further from the bottom (top) plate than in the better-resolved ones, because of insufficient thermal dissipation mainly close to the sidewall (where the grid cells are largest), and therefore the Nusselt number in under-resolved simulations is overestimated. Furthermore, we compare the best resolved thermal boundary layer profile with the Prandtl–Blasius profile. We find that the boundary layer profile is closer to the Prandtl–Blasius profile at the cylinder axis than close to the sidewall, because of rising plumes close to the sidewall.

2019 ◽  
Vol 35 (4) ◽  
pp. 713-728
Author(s):  
Hong-Yue Zou ◽  
Wen-Feng Zhou ◽  
Xi Chen ◽  
Yun Bao ◽  
Jun Chen ◽  
...  

2013 ◽  
Vol 724 ◽  
pp. 175-202 ◽  
Author(s):  
Susanne Horn ◽  
Olga Shishkina ◽  
Claus Wagner

AbstractRayleigh–Bénard convection in glycerol (Prandtl number $\mathit{Pr}= 2547. 9$) in a cylindrical cell with an aspect ratio of $\Gamma = 1$ was studied by means of three-dimensional direct numerical simulations (DNS). For that purpose, we implemented temperature-dependent material properties into our DNS code, by prescribing polynomial functions up to seventh order for the viscosity, the heat conductivity and the density. We performed simulations with the common Oberbeck–Boussinesq (OB) approximation and with non-Oberbeck–Boussinesq (NOB) effects within a range of Rayleigh numbers of $1{0}^{5} \leq \mathit{Ra}\leq 1{0}^{9} $. For the highest temperature differences, $\Delta = 80~\mathrm{K} $, the viscosity at the top is ${\sim }360\hspace{0.167em} \% $ times higher than at the bottom, while the differences of the other material properties are less than $15\hspace{0.167em} \% $. We analysed the temperature and velocity profiles and the thermal and viscous boundary-layer thicknesses. NOB effects generally lead to a breakdown of the top–bottom symmetry, typical for OB Rayleigh–Bénard convection. Under NOB conditions, the temperature in the centre of the cell ${T}_{c} $ increases with increasing $\Delta $ and can be up to $15~\mathrm{K} $ higher than under OB conditions. The comparison of our findings with several theoretical and empirical models showed that two-dimensional boundary-layer models overestimate the actual ${T}_{c} $, while models based on the temperature or velocity scales predict ${T}_{c} $ very well with a standard deviation of $0. 4~\mathrm{K} $. Furthermore, the obtained temperature profiles bend closer towards the cold top plate and further away from the hot bottom plate. The situation for the velocity profiles is reversed: they bend farther away from the top plate and closer towards to the bottom plate. The top boundary layers are always thicker than the bottom ones. Their ratio is up to 2.5 for the thermal and up to 4.5 for the viscous boundary layers. In addition, the Reynolds number $\mathit{Re}$ and the Nusselt number $\mathit{Nu}$ were investigated: $\mathit{Re}$ is higher and $\mathit{Nu}$ is lower under NOB conditions. The Nusselt number $\mathit{Nu}$ is influenced in a nonlinear way by NOB effects, stronger than was suggested by the two-dimensional simulations. The actual scaling of $\mathit{Nu}$ with $\mathit{Ra}$ in the NOB case is $\mathit{Nu}\propto {\mathit{Ra}}^{0. 298} $ and is in excellent agreement with the experimental data.


2017 ◽  
Vol 830 ◽  
Author(s):  
Pranav Joshi ◽  
Hadi Rajaei ◽  
Rudie P. J. Kunnen ◽  
Herman J. H. Clercx

This experimental study focuses on the effect of horizontal boundaries with pyramid-shaped roughness elements on the heat transfer in rotating Rayleigh–Bénard convection. It is shown that the Ekman pumping mechanism, which is responsible for the heat transfer enhancement under rotation in the case of smooth top and bottom surfaces, is unaffected by the roughness as long as the Ekman layer thickness $\unicode[STIX]{x1D6FF}_{E}$ is significantly larger than the roughness height $k$. As the rotation rate increases, and thus $\unicode[STIX]{x1D6FF}_{E}$ decreases, the roughness elements penetrate the radially inward flow in the interior of the Ekman boundary layer that feeds the columnar Ekman vortices. This perturbation generates additional thermal disturbances which are found to increase the heat transfer efficiency even further. However, when $\unicode[STIX]{x1D6FF}_{E}\approx k$, the Ekman boundary layer is strongly perturbed by the roughness elements and the Ekman pumping mechanism is suppressed. The results suggest that the Ekman pumping is re-established for $\unicode[STIX]{x1D6FF}_{E}\ll k$ as the faces of the pyramidal roughness elements then act locally as a sloping boundary on which an Ekman layer can be formed.


2018 ◽  
Vol 841 ◽  
pp. 825-850 ◽  
Author(s):  
Chong Shen Ng ◽  
Andrew Ooi ◽  
Detlef Lohse ◽  
Daniel Chung

Previous numerical studies on homogeneous Rayleigh–Bénard convection, which is Rayleigh–Bénard convection (RBC) without walls, and therefore without boundary layers, have revealed a scaling regime that is consistent with theoretical predictions of bulk-dominated thermal convection. In this so-called asymptotic regime, previous studies have predicted that the Nusselt number ($\mathit{Nu}$) and the Reynolds number ($\mathit{Re}$) vary with the Rayleigh number ($\mathit{Ra}$) according to $\mathit{Nu}\sim \mathit{Ra}^{1/2}$ and $\mathit{Re}\sim \mathit{Ra}^{1/2}$ at small Prandtl numbers ($\mathit{Pr}$). In this study, we consider a flow that is similar to RBC but with the direction of temperature gradient perpendicular to gravity instead of parallel to it; we refer to this configuration as vertical natural convection (VC). Since the direction of the temperature gradient is different in VC, there is no exact relation for the average kinetic dissipation rate, which makes it necessary to explore alternative definitions for $\mathit{Nu}$, $\mathit{Re}$ and $\mathit{Ra}$ and to find physical arguments for closure, rather than making use of the exact relation between $\mathit{Nu}$ and the dissipation rates as in RBC. Once we remove the walls from VC to obtain the homogeneous set-up, we find that the aforementioned $1/2$-power-law scaling is present, similar to the case of homogeneous RBC. When focusing on the bulk, we find that the Nusselt and Reynolds numbers in the bulk of VC too exhibit the $1/2$-power-law scaling. These results suggest that the $1/2$-power-law scaling may even be found at lower Rayleigh numbers if the appropriate quantities in the turbulent bulk flow are employed for the definitions of $\mathit{Ra}$, $\mathit{Re}$ and $\mathit{Nu}$. From a stability perspective, at low- to moderate-$\mathit{Ra}$, we find that the time evolution of the Nusselt number for homogenous vertical natural convection is unsteady, which is consistent with the nature of the elevator modes reported in previous studies on homogeneous RBC.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
U. Madanan ◽  
R. J. Goldstein

Abstract The effect of sidewall conductance on Nusselt number for the Rayleigh-Bénard convection is examined by performing nearly identical sets of experiments with sidewalls made of three different materials. These experimental results are utilized to extrapolate and estimate the Nusselt number for an ideal zero-thermal-conductivity sidewall case, which is the case when the sidewalls are perfectly insulating. A semi-analytical model is proposed, based on the concept of extended surfaces, to compute the discrepancy in Nusselt number caused by the presence of finite thermal conductance of the sidewalls. The predictions obtained using this model are found to be in good agreement with the corresponding experimentally determined values.


Sign in / Sign up

Export Citation Format

Share Document