Non-parallel stability of a flat-plate boundary layer using the complete Navier-Stokes equations

1990 ◽  
Vol 221 ◽  
pp. 311-347 ◽  
Author(s):  
H. Fasel ◽  
U. Konzelmann

Non-parallel effects which are due to the growing boundary layer are investigated by direct numerical integration of the complete Navier-Stokes equations for incompressible flows. The problem formulation is spatial, i.e. disturbances may grow or decay in the downstream direction as in the physical experiments. In the past various non-parallel theories were published that differ considerably from each other in both approach and interpretation of the results. In this paper a detailed comparison of the Navier-Stokes calculation with the various non-parallel theories is provided. It is shown, that the good agreement of some of the theories with experiments is fortuitous and that the difference between experiments and theories concerning the branch I neutral location cannot be explained by non-parallel effects.

1974 ◽  
Vol 96 (1) ◽  
pp. 49-54 ◽  
Author(s):  
J. A. Hoffmann

Similarity equations, using an assumed transformation which reduces the partial differential equations to sets of ordinary differential equations, are obtained from the boundary layer and the complete Navier-Stokes equations for the interaction of vortex flows with free stream sink flows and a stationary surface. Solutions to the boundary layer equations for the case of the potential vortex that satisfy the prescribed boundary conditions are shown to be nonexistent using the assumed transformation. Direct numerical integration is used to obtain solutions to the complete Navier-Stokes equations under a potential vortex with equal values of tangential and radial free stream velocities. Solutions are found for Reynolds numbers up to 2.0.


1995 ◽  
Vol 298 ◽  
pp. 211-248 ◽  
Author(s):  
U. Rist ◽  
H. Fasel

The three-dimensional development of controlled transition in a flat-plate boundary layer is investigated by direct numerical simulation (DNS) using the complete Navier-Stokes equations. The numerical investigations are based on the so-called spatial model, thus allowing realistic simulations of spatially developing transition phenomena as observed in laboratory experiments. For solving the Navier-Stokes equations, an efficient and accurate numerical method was developed employing fourth-order finite differences in the downstream and wall-normal directions and treating the spanwise direction pseudo-spectrally. The present paper focuses on direct simulations of the wind-tunnel experiments by Kachanov et al. (1984, 1985) of fundamental breakdown in controlled transition. The numerical results agreed very well with the experimental measurements up to the second spike stage, in spite of relatively coarse spanwise resolution. Detailed analysis of the numerical data allowed identification of the essential breakdown mechanisms. In particular, from our numerical data, we could identify the dominant shear layers and vortical structures that are associated with this breakdown process.


Numerical solution of the three-dimensional incompressible Navier-Stokes equations is used to study the instability of a flat-plate boundary layer in a manner analogous to the vibrating-ribbon experiments. Flow field structures are observed which are very similar to those found in the vibrating-ribbon experiment to which computational initial conditions have been matched. Stream wise periodicity is assumed in the simulation so that the evolution occurs in time, but the events that constitute the instability are so similar to the spatially occurring ones of the laboratory that it seems clear the physical processes involved are the same. A spectral and finite difference numerical algorithm is employed in the simulation.


AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 1603-1614
Author(s):  
Martin Scholtysik ◽  
Bernhard Mueller ◽  
Torstein K. Fannelop

1985 ◽  
Vol 40 (8) ◽  
pp. 789-799 ◽  
Author(s):  
A. F. Borghesani

The Navier-Stokes equations for the fluid motion induced by a disk rotating inside a cylindrical cavity have been integrated for several values of the boundary layer thickness d. The equivalence of such a device to a rotating disk immersed in an infinite medium has been shown in the limit as d → 0. From that solution and taking into account edge effect corrections an equation for the viscous torque acting on the disk has been derived, which depends only on d. Moreover, these results justify the use of a rotating disk to perform accurate viscosity measurements.


1998 ◽  
Vol 371 ◽  
pp. 207-232 ◽  
Author(s):  
G. VITTORI ◽  
R. VERZICCO

Numerical simulations of Navier–Stokes equations are performed to study the flow originated by an oscillating pressure gradient close to a wall characterized by small imperfections. The scenario of transition from the laminar to the turbulent regime is investigated and the results are interpreted in the light of existing analytical theories. The ‘disturbed-laminar’ and the ‘intermittently turbulent’ regimes detected experimentally are reproduced by the present simulations. Moreover it is found that imperfections of the wall are of fundamental importance in causing the growth of two-dimensional disturbances which in turn trigger turbulence in the Stokes boundary layer. Finally, in the intermittently turbulent regime, a description is given of the temporal development of turbulence characteristics.


1995 ◽  
Vol 291 ◽  
pp. 369-392 ◽  
Author(s):  
Ronald D. Joslin

The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier–Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic-source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in flat-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.


Author(s):  
Kazuomi Yamamoto ◽  
Yoshimichi Tanida

A self-excited oscillation of transonic flow in a simplified cascade model was investigated experimentally, theoretically and numerically. The measurements of the shock wave and wake motions, and unsteady static pressure field predict a closed loop mechanism, in which the pressure disturbance, that is generated by the oscillation of boundary layer separation, propagates upstream in the main flow and forces the shock wave to oscillate, and then the shock oscillation disturbs the boundary layer separation again. A one-dimensional analysis confirms that the self-excited oscillation occurs in the proposed mechanism. Finally, a numerical simulation of the Navier-Stokes equations reveals the unsteady flow structure of the reversed flow region around the trailing edge, which induces the large flow separation to bring about the anti-phase oscillation.


2014 ◽  
Vol 752 ◽  
pp. 602-625 ◽  
Author(s):  
Kengo Deguchi ◽  
Philip Hall

AbstractOur concern in this paper is with high-Reynolds-number nonlinear equilibrium solutions of the Navier–Stokes equations for boundary-layer flows. Here we consider the asymptotic suction boundary layer (ASBL) which we take as a prototype parallel boundary layer. Solutions of the equations of motion are obtained using a homotopy continuation from two known types of solutions for plane Couette flow. At high Reynolds numbers, it is shown that the first type of solution takes the form of a vortex–wave interaction (VWI) state, see Hall & Smith (J. Fluid Mech., vol. 227, 1991, pp. 641–666), and is located in the main part of the boundary layer. On the other hand, here the second type is found to support an equilibrium solution of the unit-Reynolds-number Navier–Stokes equations in a layer located a distance of $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}O(\ln \mathit{Re})$ from the wall. Here $\mathit{Re}$ is the Reynolds number based on the free-stream speed and the unperturbed boundary-layer thickness. The streaky field produced by the interaction grows exponentially below the layer and takes its maximum size within the unperturbed boundary layer. The results suggest the possibility of two distinct types of streaky coherent structures existing, possibly simultaneously, in disturbed boundary layers.


Sign in / Sign up

Export Citation Format

Share Document