A composite asymptotic model for the wave motion in a steady three-dimensional subsonic boundary layer

1997 ◽  
Vol 337 ◽  
pp. 103-128 ◽  
Author(s):  
OLEG S. RYZHOV ◽  
EUGENE D. TERENT'EV

The problem for a thin near-wall region is reduced, within the triple-deck approach, to unsteady three-dimensional nonlinear boundary-layer equations subject to an interaction law. A linear version of the boundary-value problem describes eigenmodes of different nature (including crossflow vortices) coupled together. The frequency ω of the eigenmodes is connected with the components k and m of the wavenumber vector through a dispersion relation. This relation exhibits two singular properties. One of them is of basic importance since it makes the imaginary part Im(ω) of the frequency increase without bound as k and m tend to infnity along some curves in the real (k, m)-plane. The singularity turns out to be strong, rendering the Cauchy problem ill posed for linear equations.Accounting for the second-order approximation in asymptotic expansions for the upper and main decks brings about significant alterations in the interaction law. A new mathematical model leans upon a set of composite equations without rescaling the original independent variables and desired functions. As a result, the right-hand side of a modified dispersion relation involves an additional term multiplied by a small parameter ε=R−1/8, R being the reference Reynolds number. The aforementioned strong singularity is missing from solutions of the modified dispersion relation. Thus, the range of validity of a linear approximation becomes far more extended in ω, k and m, but the incorporation of the higher-order term into the interaction law means in essence that the Reynolds number is retained in the formulation of a key problem for the lower deck.

1979 ◽  
Vol 101 (2) ◽  
pp. 233-245 ◽  
Author(s):  
J. De Ruyck ◽  
C. Hirsch ◽  
P. Kool

An axial compressor end-wall boundary layer theory which requires the introduction of three-dimensional velocity profile models is described. The method is based on pitch-averaged boundary layer equations and contains blade force-defect terms for which a new expression in function of transverse momentum thickness is introduced. In presence of tip clearance a component of the defect force proportional to the clearance over blade height ratio is also introduced. In this way two constants enter the model. It is also shown that all three-dimensional velocity profile models present inherent limitations with regard to the range of boundary layer momentum thicknesses they are able to represent. Therefore a new heuristic velocity profile model is introduced, giving higher flexibility. The end-wall boundary layer calculation allows a correction of the efficiency due to end-wall losses as well as calculation of blockage. The two constants entering the model are calibrated and compared with experimental data allowing a good prediction of overall efficiency including clearance effects and aspect ratio. Besides, the method allows a prediction of radial distribution of velocities and flow angles including the end-wall region and examples are shown compared to experimental data.


2011 ◽  
Vol 1 (4) ◽  
Author(s):  
Ziemowit Malecha

AbstractIn this paper, a new computational benchmark test for fluid dynamics is presented. The new benchmark is based on the interaction of a single vortex structure (vortex patch) with a wall. It will be shown that it is possible to distinguish two critical or threshold values of the Reynolds number in the considered flow. The increase of the Reynolds number causes the appearance of the vortex bubble in the near-wall region first, and then next, the eruption of the boundary layer phenomenon. Further increase of the Reynolds number causes the flow to be more complex. The eruption phenomenon becomes more intense and also shows its regenerative nature.


1995 ◽  
Vol 117 (2) ◽  
pp. 248-254 ◽  
Author(s):  
C. Hu¨rst ◽  
A. Schulz ◽  
S. Wittig

The present study compares measured and computed heat transfer coefficients for high-speed boundary layer nozzle flows under engine Reynolds number conditions (U∞=230 ÷ 880 m/s, Re* = 0.37 ÷ 1.07 × 106). Experimental data have been obtained by heat transfer measurements in a two-dimensional, nonsymmetric, convergent–divergent nozzle. The nozzle wall is convectively cooled using water passages. The coolant heat transfer data and nozzle surface temperatures are used as boundary conditions for a three-dimensional finite-element code, which is employed to calculate the temperature distribution inside the nozzle wall. Heat transfer coefficients along the hot gas nozzle wall are derived from the temperature gradients normal to the surface. The results are compared with numerical heat transfer predictions using the low-Reynolds-number k–ε turbulence model by Lam and Bremhorst. Influence of compressibility in the transport equations for the turbulence properties is taken into account by using the local averaged density. The results confirm that this simplification leads to good results for transonic and low supersonic flows.


2016 ◽  
Vol 792 ◽  
pp. 682-711 ◽  
Author(s):  
Michael O. John ◽  
Dominik Obrist ◽  
Leonhard Kleiser

The leading-edge boundary layer (LEBL) in the front part of swept airplane wings is prone to three-dimensional subcritical instability, which may lead to bypass transition. The resulting increase of airplane drag and fuel consumption implies a negative environmental impact. In the present paper, we present a temporal biglobal secondary stability analysis (SSA) and direct numerical simulations (DNS) of this flow to investigate a subcritical transition mechanism. The LEBL is modelled by the swept Hiemenz boundary layer (SHBL), with and without wall suction. We introduce a pair of steady, counter-rotating, streamwise vortices next to the attachment line as a generic primary disturbance. This generates a high-speed streak, which evolves slowly in the streamwise direction. The SSA predicts that this flow is unstable to secondary, time-dependent perturbations. We report the upper branch of the secondary neutral curve and describe numerous eigenmodes located inside the shear layers surrounding the primary high-speed streak and the vortices. We find secondary flow instability at Reynolds numbers as low as$Re\approx 175$, i.e. far below the linear critical Reynolds number$Re_{crit}\approx 583$of the SHBL. This secondary modal instability is confirmed by our three-dimensional DNS. Furthermore, these simulations show that the modes may grow until nonlinear processes lead to breakdown to turbulent flow for Reynolds numbers above$Re_{tr}\approx 250$. The three-dimensional mode shapes, growth rates, and the frequency dependence of the secondary eigenmodes found by SSA and the DNS results are in close agreement with each other. The transition Reynolds number$Re_{tr}\approx 250$at zero suction and its increase with wall suction closely coincide with experimental and numerical results from the literature. We conclude that the secondary instability and the transition scenario presented in this paper may serve as a possible explanation for the well-known subcritical transition observed in the leading-edge boundary layer.


1971 ◽  
Vol 22 (4) ◽  
pp. 346-362 ◽  
Author(s):  
J. F. Nash ◽  
R. R. Tseng

SummaryThis paper presents the results of some calculations of the incompressible turbulent boundary layer on an infinite yawed wing. A discussion is made of the effects of increasing lift coefficient, and increasing Reynolds number, on the displacement thickness, and on the magnitude and direction of the skin friction. The effects of the state of the boundary layer (laminar or turbulent) along the attachment line are also considered.A study is made to determine whether the behaviour of the boundary layer can adequately be predicted by a two-dimensional calculation. It is concluded that there is no simple way to do this (as is provided, in the laminar case, by the principle of independence). However, with some modification, a two-dimensional calculation can be made to give an acceptable numerical representation of the chordwise components of the flow.


1983 ◽  
Vol 105 (4) ◽  
pp. 435-438 ◽  
Author(s):  
T. Motohashi ◽  
R. F. Blackwelder

To study boundary layers in the transitional Reynolds number regime, the useful spanwise and streamwise extent of wind tunnels is often limited by turbulent fluid emanating from the side walls. Some or all of the turbulent fluid can be removed by sucking fluid out at the corners, as suggested by Amini [1]. It is shown that by optimizing the suction slot width, the side wall contamination can be dramatically decreased without a concomitant three-dimensional distortion of the laminar boundary layer.


1984 ◽  
Vol 142 ◽  
pp. 121-149 ◽  
Author(s):  
William W. Willmarth ◽  
Lalit K. Sharma

The small-scale structure of the streamwise velocity fluctuations in the wall region of a turbulent boundary layer is examined in a new wind-tunnel facility using hot-wires smaller than any previously constructed (typical dimensions: l = 25 μm, d = 0.5 μm). In the boundary layer in which the measurements were made, the ratio of the hot-wire length to the viscous length is 0.3. The turbulent intensity measured with the small hot wires is larger than that measured with longer wires owing to the better spatial resolution of the small wires. The velocity fluctuations measured by the small hot wires are also analysed to determine the burst frequency at two Reynolds numbers and at various distances from the wall. The dimensionless burst frequency does not depend on the Reynolds number when scaled with wall parameters. However, it increases with Reynolds number when scaled with outer variables. Velocity fluctuations measured by two hot wires, less than two viscous lengths apart, are analysed to reveal the small-scale features present during a burst and in the absence of a burst. The main conclusions are: (1) intermittent small-scale shear layers occur most frequently when bursts are present, less frequently just after a burst, and even less frequently just before a burst; and (2) on occasion the velocity gradient of the small-scale shear layers is as large as the mean-velocity gradient at the wall.


A phenomenon of boundary-layer instability is discussed from the theoretical and experimental points of view. The china-clay evaporation technique shows streaks on the surface, denoting a vortex system generated in the region of flow upstream of transition. Experiments on a swept wing are described briefly, while experiments on the flow due to a rotating disk receive much greater attention. In the latter case, the axes of the disturbance vortices take the form of equi-angular spirals, bounded by radii of instability and of transition. A frequency analysis of the disturbances shows that there is a narrow band of disturbance components of high amplitude, some frequencies within this band corresponding to disturbances fixed relative to the surface and others corresponding to moving waves. Furthermore, the determination of velocity profiles for the rotating-disk flow is described, the agreement with the theoretical solution for laminar flow being quite satisfactory; for turbulent flow, however, the empirical theories are not very satisfactory. In order to explain the vortex phenomenon just discussed, the general equations of motion in orthogonal curvilinear co-ordinates are examined by superimposing an infinitesimal disturbance periodic in space and time on the main flow, and linearizing for small disturbances. An important result is that, within the range of certain approximations, the velocity component in the direction of propagation of the disturbance may be regarded as a two-dimensional flow for stability purposes; then the problem of stability formally resembles the well-known two dimensional problem. However, it is important to emphasize that this result—namely, that the flow curvature has little influence on stability—is applicable only to the possible modes of instability in a local region. The nature of three-dimensional flows is discussed, and the importance of co-ordinates along and normal to the stream-lines outside the boundary layer is examined. In accord with the formal two-dimensional nature of the instability, there is a whole class of velocity distributions, corresponding to different directions, which may exhibit instability. The question of stability at infinite Reynolds number is examined in detail for these profiles. As for ordinary two-dimensional flows, the wave velocity of the disturbance must lie somewhere between the maximum and minimum of the velocity profile considered. The points where the wave velocity equals the fluid velocity are called critical points, of which most of the profiles considered have two. Then Tollmien’s criterion that velocity profiles with a point of inflexion are unstable at infinite Reynolds number is extended to the case of profiles with two critical points. One particular profile—namely, that for which the point of inflexion lies at the point of zero velocity—may generate neutral disturbances of zero phase velocity, corresponding to the disturbances visualized by the china-clay technique. A variational method for the solution of certain of the eigenvalue problems associated with stability at infinite Reynolds number is derived, found by comparison with an exact solution to be very accurate, and applied to the rotating disk. The fixed vortices predicted by the theory have as their axes equi-angular spirals of angle 103°, in good agreement with experiment, but the agreement between theoretical and experimental wave number is not good, the discrepancy being attributed to viscosity. Finally, the correlation between the experimentally observed and theoretically possible disturbances is discussed and certain conclusions drawn therefrom. The streamlines of the disturbed boundary layer show the existence of a double row of vortices, one row of which produces the streaks in the china clay. Application of the theory to other physical phenomena is described.


Flow visualization is used to study the flow that results when a potential vortex rotates normal to a stationary horizontal disc. Viscosity is seen to remove the singularity on the vortex axis and lead to the development of a three-dimensional boundary layer. The flow remains laminar below a Reynolds number, Re , of about 10 4 , where Re is based on radius and velocity at the disc edge. With further increases in Re the boundary layer becomes turbulent but relaminarizes as it is advected radially inwards by the highly favourable radial pressure gradient associated with the outer flow. The radius of the zone of relaminarized fluid decreases with increasing Re . Close to the axis the flow effuses vertically to form the core of the vortex which, for Re < 10 4 , is observed to undergo a massive disruption, either of the axisymmetric or helical form. The sense of the helix was observed on some occasions to be with that of the outer flow and on others to be opposite that of the outer flow.


Sign in / Sign up

Export Citation Format

Share Document