Essential oils from Ocimum basilicum cultivars: analysis of their composition and determination of the effect of the major compounds on Haemonchus contortus eggs

2021 ◽  
Vol 95 ◽  
Author(s):  
A.I.P. Sousa ◽  
C.R. Silva ◽  
H.N. Costa-Júnior ◽  
N.C.S. Silva ◽  
J.A.O. Pinto ◽  
...  

Abstract The continuous use of synthetic anthelmintics against gastrointestinal nematodes (GINs) has resulted in the increased resistance, which is why alternative methods are being sought, such as the use of natural products. Plant essential oils (EOs) have been considered as potential products for the control of GINs. However, the chemical composition and, consequently, the biological activity of EOs vary in different plant cultivars. The aim of this study was to evaluate the anthelmintic activity of EOs from cultivars of Ocimum basilicum L. and that of their major constituents against Haemonchus contortus. The EOs from 16 cultivars as well the pure compound linalool, methyl chavicol, citral and eugenol were used in the assessment of the inhibition of H. contortus egg hatch. In addition, the composition of three cultivars was simulated using a combination of the two major compounds from each. The EOs from different cultivars showed mean Inhibition Concentration (IC50) varying from 0.56 to 2.22 mg/mL. The cultivar with the highest egg-hatch inhibition, Napoletano, is constituted mainly of linalool and methyl chavicol. Among the individual compounds tested, citral was the most effective (IC50 0.30 mg/mL). The best combination of compounds was obtained with 11% eugenol plus 64% linalool (IC50 0.44 mg/mL), simulating the Italian Large Leaf (Richters) cultivar. We conclude that different cultivars of O. basilicum show different anthelmintic potential, with cultivars containing linalool and methyl chavicol being the most promising; and that citral or methyl chavicol isolated should also be considered for the development of new anthelmintic formulations.

2019 ◽  
Vol 94 ◽  
Author(s):  
S. Saha ◽  
S. Lachance

Abstract The efficacy of eight essential oils (EOs) (Solidago canadensis, Eucalyptus globulus, Pelargonium asperum, Ocimum basilicum, Thymus vulgaris, Mentha piperita, Cymbopogon citratus and Cymbopogon martinii) against gastrointestinal nematodes (GINs) was evaluated using eggs collected from naturally infected cattle and cultured infective larvae (L3). The larvae species cultured from the faecal samples and subjected to two in vitro tests were Haemonchus spp. (55.5%), Trichostrongylus spp. (28.0%), Cooperia spp. (15.0%) and Oesophagostomum spp. (1.5%). The genus of EO Cymbopogon (C. citratus and C. martinii) showed the highest anthelmintic activity at the dose of 8.75 mg/ml, for the egg hatch, the larval migration and mortality assays. All of the EOs tested reduced egg hatching to rates <19.0%, compared to the controls (water and water + Tween 20) that had rates >92.0%. Cymbopogon citratus and C. martinii treatments resulted in 11.6 and 8.1% egg hatch, had the lowest migration of larvae through sieves, 60.5 and 54.9%, and the highest mortality rates, 63.3 and 56.3%, respectively. Dose–response tests showed that EO from C. citratus had the lowest larval LC50 and migration inhibition concentration (IC50) values of 3.89 and 7.19 mg/ml, respectively, compared to two other EOs (C. martinii and O. basilicum). The results suggest that EOs from the genus Cymbopogon can be interesting candidates for nematode control in cattle, although it may prove challenging to deliver concentrations to the gastrointestinal tract sufficient to effectively manage GINs.


Author(s):  
Gerardo Jiménez-Penago ◽  
Roberto González-Garduño ◽  
Luciano Martínez-Bolaños ◽  
Ema Maldonado-Siman ◽  
Alvar A. Cruz-Tamayo ◽  
...  

2018 ◽  
Vol 46 (1) ◽  
pp. 14 ◽  
Author(s):  
Weibson Paz Pinheiro André ◽  
Wesley Lyeverton Correia Ribeiro ◽  
Lorena Mayana Beserra de Oliveira ◽  
Iara Tersia Freitas Macedo ◽  
Fernanda Cristina Macedo Rondon ◽  
...  

Background: Gastrointestinal nematodes are one of the major health and economic problem of sheep and goats in the world. The control of these nematodes is carried out conventionally with synthetic anthelminths, which favored the selection of gastrointestinal nematode (GIN) populations multiresistant to anthelmintics. The emergence of anthelmintic resistance has stimulated the search for new alternatives to control small ruminant GIN, standing out the use of plants and their bioactives compounds, such as essential oils (EO). The objective of this review was to present the main characteristics and anthelmintic activity of EO, their isolated compounds and drug delivery systems in the control of GIN.Review: Essential oils are a complex blend of bioactive compounds with volatile, lipophilic, usually odoriferous and liquid substances. EO are composed of terpenes, terpenoids, aromatic and aliphatic constituents. EO has various pharmacological activities of interest in preventive veterinary medicine such as antibacterials, antifungals, anticoccicids, insecticides and anthelmintics. In vitro and in vivo tests are used to validate the anthelmintic activity of EO on GIN. In vitro tests are low cost screening tests that allow the evaluation of the anthelmintic activity of a large amount of bioactive compounds on eggs, first (L1) and third stage larvae (L3), and adult nematodes. The antiparasitic effect of EO is related to its main compound or to the interaction of the compounds. These bioactive compounds penetrate the cuticle of the nematodes by transcuticular diffusion, altering the mechanisms of locomotion, besides causing cuticular lesions. Following in vitro evaluation, the acute and sub-chronic toxicity test should be performed to assess the toxicity of the bioactive compounds and to define the dose to be used in in vivo tests. In vivo tests are more reliable because the anthelmintic effectiveness of bioactive compounds is evaluated after the metabolization process. The metabolization process of the bioactive compounds can generate metabolites that exhibit or not anthelmintic effectiveness. The in vivo tests assessing the anthelmintic effectiveness of bioactive compounds in sheep and goats are the fecal egg count reduction test and the controlled test.  OE promoted reduction of egg elimination in faeces which may be related to cuticular and reproductive alterations in GIN, and reduction of parasite burden in in vivo tests. Due to the promising results obtained with OE in the in vivo tests, interest has been aroused in using nanotechnology as an alternative to increase the bioavailability of OE and consequently, potentializing its anthelmintic effect, reducing the dose and  toxicity of the biocompounds. In addition to nanotechnology, the isolation and chemical modification of compounds isolated from OE have been employed to obtain new molecules with anthelmintic action and understand the mechanism of action of EO on the small ruminant GIN.Conclusion: The use of EO and their compound bioactive in the control of resistant populations of GIN is a promising alternative. The adoption of strategies in which natural products can replace synthetic anthelmintics, such as in dry periods and use synthetic anthelmintics in the rainy season when the population in refugia in the pasture is high, thus reducing the dissemination of GIN resistant populations. As perspective, the evaluation of pharmacokinetics and pharmacodynamics of these natural products should be performed so that one defines treatment protocols that optimize the anthelmintic effect.


2020 ◽  
Vol 87 ◽  
Author(s):  
Anna Lopes da Costa Souza ◽  
Cristina Karine de Oliveira Rebouças ◽  
Cynthia Cavalcanti de Albuquerque ◽  
Cristiane de Carvalho Ferreira Lima Moura ◽  
Taffarel Melo Torres ◽  
...  

ABSTRACT Since drug-resistant nematodes became a common problem in sheep and goat industries, alternative methods using natural products have emerged as a viable and sustainable anthelmintic treatment option. Here, the in vitro effect of essential oil extracted from Lippia gracilis Schauer was assessed on the hatching process of nematodes recovered from naturally infected goats. Essential oil at concentrations of 0.08% (0.008 μL/mL), 0.12% (0.012 μL/mL), and 0.16% (0.016 μL/mL) was able to induce an average inhibition of 74.7, 84 and 93%, respectively. The effective concentration required to inhibit egg hatching in 50% of eggs (EC50) was 0.03452%. Therefore, essential oil of L. gracilis showed promisor in vitro anthelmintic results against egg-hatching of goat gastrointestinal nematodes.


Parasitology ◽  
2018 ◽  
Vol 145 (14) ◽  
pp. 1884-1889 ◽  
Author(s):  
Acidália Carine Vieira Santos ◽  
Francianne Oliveira Santos ◽  
Hélimar Gonçalves Lima ◽  
Gisele Dias Da Silva ◽  
Rosangela Soares Uzêda ◽  
...  

AbstractThis study assessed the anthelmintic activity of plant-derived compounds against gastrointestinal nematodes of goats using the egg hatch and larval motility assays. The compounds tested were saponins (digitonin and aescin) and their respective sapogenins (aglycones), hecogenin acetate and flavonoids (catechin, hesperidin, isocordoin and a mixture of isocordoin and cordoin). Additionally, cytotoxicity of active substances was analysed on Vero cell through 3-4,5-dimethylthiazol-2-yl,2,5diphenyltetrazolium bromide (MTT) and propidium iodide (PI) tests. Significant reduction on the egg hatching (P < 0.05) was seen only in the treatments with aescin (99%/EC50 = 0.67 mg mL−1) and digitonin (45%). The compounds that reduced the larval motility (P < 0.05) were digitonin (EC50 = 0.03 mg mL−1 and EC90 = 0.49 mg mL−1) and the hecogenin acetate (75%). The other sapogenins showed low anthelmintic activity. All the flavonoids showed low ovicidal (4–12%) and larvicidal (10–19%) effects. The aescin and digitonin showed low toxicity in PI test (viable cells >90%). Nevertheless, higher cytotoxicity was observed in the MTT assay, with IC50 of 0.20 mg mL−1 (aescin) and 0.0074 mg mL−1 (digitonin). Aescin and digitonin have a pronounced in vitro anthelmintic effect and the glycone portion of these saponins plays an important role in this activity.


2017 ◽  
Vol 12 (12) ◽  
pp. 1934578X1701201
Author(s):  
Gianluca Fichi ◽  
Matteo Mattellini ◽  
Elisa Meloni ◽  
Guido Flamini ◽  
Stefania Perrucci

The in vitro anthelmintic activity on sheep gastrointestinal strongyle (GIS) eggs and larvae of 0.5% aloin and 0.1% aloe-emodin was investigated. From fresh faecal samples collected by ewes naturally infected by Haemonchus, Trichostrongylus and Teladorsagia nematodes, GIS eggs were isolated and cultivated in Petri dishes (100 eggs/dish). For the in vitro evaluation of the anthelmintic activity of tested compounds, the Egg hatch test (EHT), the Larval development test (LDT) and the Larval mortality/paralysis test (LMT) were used. In each assay, the activity of tested compounds was compared to untreated and treated (0.1% thiabendazole, TBZ) controls. Six repetitions were made through the experiment. Obtained data were statistically elaborated using the X2 test. In EHT, 0.5% aloin gave highly significantly different (P<0.01) results from the untreated controls. In LDT, both 0.1% aloe-emodin and 0.5% aloin almost completely prevented the larval development from L1 to L3, showing no significant differences (P<0.01) when compared to TBZ. In LMT, larval mortality observed in 0.5% aloin treated plates was significantly higher (P<0.01) than that observed in TBZ treated controls. These results show the in vitro anthelmintic properties on sheep GIS of the examined plant secondary metabolites. In LDT and/or LMT, the activity of 0.5% aloin and 0.1% aloe-emodin was comparable to or higher than that of the reference drug.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Aliyi Hassen Ahmed ◽  
Mebrat Ejo ◽  
Teka Feyera ◽  
Dereje Regassa ◽  
Bahar Mummed ◽  
...  

Gastrointestinal nematodes (GINs) are the major limiting factor for the successfulness of livestock production throughout the world. Emergence of resistance strains as well as scarcity and high cost of the currently available drugs has led to the evaluation of other alternative helminth control options, mainly from plants. The current study is aimed at investigating the in vitro anthelmintic efficacy of crude methanolic extracts of two traditionally important medicinal plants, Artemisia herba-alba and Punica granatum, against Haemonchus contortus using adult motility assay (AMA) and egg hatch inhibition assay (EHIA). Four graded concentrations of the extracts were tested for both the AMA (10, 5, 2.5, and 1.25 mg/mg) and EHIA (0.1, 0.25, 0.5, and 1 mg/mL) in replicates. Albendazole and phosphate-buffered saline (AMA) or distilled water (EHIA) were used as the positive and negative controls, respectively. The crude extracts of A. herba-alba and P. granatum exhibited a potential anthelmintic activity at all dose levels in a concentration- and time-dependent fashion. The highest concentration (10 mg/mL) of all the extracts caused a significantly (p<0.05) superior nematocidal activity compared to the negative control. Moreover, significant and concentration-dependent egg hatching inhibition effect was observed from both plant extracts. Maximal (98.67%) egg hatching inhibition effect was exhibited by the flower extract of A. herba-alba at 1 mg/mL concentration. The relative egg hatch inhibition efficacy indicated that both plants caused a significantly (p<0.05) greater egg hatch inhibition within 48 hr of exposure. The current study validated the traditional use of both plants as a natural anthelmintic against H. contortus justifying a need to undertake detail pharmacological and toxicological investigation on both plants.


2019 ◽  
Vol 6 (2) ◽  
pp. 35 ◽  
Author(s):  
Michela Maestrini ◽  
Aldo Tava ◽  
Simone Mancini ◽  
Federica Salari ◽  
Stefania Perrucci

With the aim to find new effective natural compounds for the control of nematodes, the in vitro anthelminthic properties of purified 1% saponins showing different chemical compositions and derived from Medicago sativa (MS), Medicago arborea (MA), Medicago polymorpha cultivar ‘Santiago’ (MPS), M. polymorpha cultivar ‘Anglona’ (MPA), and 1% prosapogenins from M. sativa (MSp), were evaluated and compared. As a source of nematode eggs, pooled fresh fecal samples taken from dairy donkeys naturally infected by gastrointestinal nematodes were used. From fecal samples, eggs were recovered, suspended in deionized water, and used immediately in the bioassay (egg hatch test). The activity of the tested compounds was compared to positive (0.1% thiabendazole) and negative (deionized water and 1% DMSO) controls. All experiments were repeated in triplicate and the obtained data were statistically analyzed. All the tested plant compounds caused a significant (p < 0.05) inhibition of nematode egg hatching (>80%). Moreover, all saponins and prosapogenins showed in vitro anthelmintic properties statistically comparable to that of the reference drug (p < 0.05), except for MPS extract. Obtained results showed that the different Medicago saponins evaluated in this study possess high anthelmintic properties against gastrointestinal nematodes of dairy donkeys, although to a different extent depending on their composition.


2014 ◽  
Vol 9 (10) ◽  
pp. 1934578X1400901 ◽  
Author(s):  
Rajendra C. Padalia ◽  
Ram S. Verma ◽  
Amit Chauhan ◽  
Prakash Goswami ◽  
Chandan S. Chanotiya ◽  
...  

The composition of hydrodistilled essential oils of Ocimum basilicum L. (four chemovariants), O. tenuiflorum L., O. gratissimum L., and O. kilimandscharicum Guerke were analyzed and compared by using capillary gas chromatography (GC/FID) and GC-mass spectrometry (GC/MS). Phenyl propanoids (upto 87.0%) and monoterpenoids (upto 83.3%) were prevalent constituents distributed in the studied Ocimum taxa. The major constituents of the four distinct chemovariants of O. basilicum were methyl chavicol (86.3%), methyl chavicol (61.5%)/linalool (28.6%), citral (65.9%); and linalool (36.1%)/citral (28.8%). Eugenol (66.5% and 78.0%) was the major constituent of O. tenuiflorum and O. gratissimum. Eugenol (34.0%), β-bisabolene (15.4%), ( E)-α-bisabolene (10.9%), methyl chavicol (10.2%) and 1,8-cineole (8.2%) were the major constituents of O. kilimandscharicum. In order to explore the potential for industrial use, the extracted essential oils were assessed for their antifungal potential through poison food technique against two phytopathogens, Rhizoctonia solani and Choanephora cucurbitarum, which cause root and wet rot diseases in various crops. O. tenuiflorum, O. gratissimum, and O. kilimandscharicum exhibited complete growth inhibition against R. solani and C. cucurbitarum after 24 and 48 h of treatment. O. basilicum chemotypes showed variable levels of growth inhibition (63.0%–100%) against these two phytopathogens.


Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 219 ◽  
Author(s):  
Dominika Mravčáková ◽  
Michaela Komáromyová ◽  
Michal Babják ◽  
Michaela Urda Dolinská ◽  
Alžbeta Königová ◽  
...  

The objective of this study is to evaluate the effect of dry wormwood and mallow on the gastrointestinal parasite of small ruminants Haemonchus contortus. Twenty-four experimentally infected lambs were randomly divided into four groups of six animals each: unsupplemented lambs, lambs supplemented with wormwood, lambs supplemented with mallow and animals supplemented with a mix of both plants. Faecal samples from the lambs were collected on day 23, 29, 36, 43, 50, 57, 64 and 75 post-infection for quantification of the number of eggs per gram (EPG). The mix of both plants contained phenolic acids (10.7 g/kg DM) and flavonoids (5.51 g/kg DM). The nematode eggs were collected and in vitro egg hatch test was performed. The aqueous extracts of both plants exhibited strong ovicidal effect on H. contortus, with ED50 and ED99 values of 1.40 and 3.76 mg/mL and 2.17 and 5.89 mg/mL, respectively, in the in vitro tests. Despite the great individual differences between the treated lambs in eggs reduction, the mean EPG of the untreated and treated groups did not differ (p > 0.05). Our results indicate that using wormwood and mallow as dietary supplements do not have a sufficient effect on lambs infected with H. contortus.


Sign in / Sign up

Export Citation Format

Share Document