A focus for biophysical research in energy problems

1977 ◽  
Vol 10 (2) ◽  
pp. 99-111 ◽  
Author(s):  
Thomas H. Moss

AbstractThere is widespread agreement that solar energy is the most promising long-range energy source. However, contemporary technology for bulk energy storage is so primitive that full use of the inevitably erratic solar energy flux is severely limited. Biological systems have perfected methods of storing solar energy for later use in periods of darkness, and it is argued in this symposium presentation that there are many frontiers in biophysics related to the solar energy storage problem. Moreover, the conceivable biological storage systems span a wide range of technology, with appropriate applications in societies of widely varying degrees of industrial development. Use of biological systems to produce hydrogen from solar energy may be among the most versatile of these applications. The entire problem of bioconversion of solar energy presents an excellent example of how the needs for basic scientific understanding and application engineering can be very tightly interwoven.

Author(s):  
Septimus van der Linden

The installed capacity of WTG’s in the US and worldwide, while impressive, suffers from a low capacity factor of 30% or less due to the variability of wind as the motive force. Installing larger wind farms to cover the deficiency of capacity results in high costs per delivered kW/hr. This begs for continued tax incentives to deliver “green” energy to the consumers. The full capability of the WTG is never realized as, at high wind speeds, some of the wind energy has to be “spilled” to maintain a smooth delivery profile. Technology improvements have not overcome the “wasted” capacity of these modern marvels except where Hydro or Pumped Hydro Storage (PHS) facilities are utilized. The Hydro power station can compensate for wind variability while PHS provides energy storage and delivers power during high demand periods. Wind Energy Storage results in a much higher capacity factor, in effect reducing the cost of delivered kW/hrs. The problem with this excellent solution is that the USA or the worldwide installation of WTG’s do not have such facilities readily available, are expensive to construct and difficult to permit in the USA. A readily available, cost effective alternative bulk-energy storage technology is ready for deployment throughout most of the continental USA. The GT-CAES concept incorporates a standard production GT with CAES technology and so covers a wide range of power production that can be matched to specific storage sites. During excess wind power production or nighttime wind, this power is used to drive air compressors to pump up or pressurize storage facilities such as salt caverns, deep aquifers (depleted natural gas wells). The stored compressed air is released to an air expander to recover the stored energy. The air to the expansion turbine is pre-heated to 950 to 1050 oF using the Gas Turbine exhaust energy recovered in a Recuperator (HRU). The low exhaust emissions are reduced further with SCR in the HRU. This paper will examine the early operating CAES concepts vs. the GT-CAES approach and will consider the economics of wind integration for lower costs of electric generation. Wind as a renewable resource would be able to deliver a larger percentage of “green” capacity with the ancillary power benefits of CAES such as Voltage Regulation, load following, spinning reserve, etc., not a feature of WTG’s. The patented GT-CAES system is described with examples of small and large installations using proposed projects with integration of Wind Energy.


2020 ◽  
Vol 12 (12) ◽  
pp. 31-43
Author(s):  
Tatiana A. VASKOVSKAYA ◽  
◽  
Boris A. KLUS ◽  

The development of energy storage systems allows us to consider their usage for load profile leveling during operational planning on electricity markets. The paper proposes and analyses an application of an energy storage model to the electricity market in Russia with the focus on the day ahead market. We consider bidding, energy storage constraints for an optimal power flow problem, and locational marginal pricing. We show that the largest effect for the market and for the energy storage system would be gained by integration of the energy storage model into the market’s optimization models. The proposed theory has been tested on the optimal power flow model of the day ahead market in Russia of 10000-node Unified Energy System. It is shown that energy storage systems are in demand with a wide range of efficiencies and cycle costs.


2018 ◽  
Vol 1 (2) ◽  
pp. 40-51 ◽  
Author(s):  
Muhammad Burhan ◽  
Muhammad Wakil Shahzad ◽  
Kim Choon Ng

Standalone power systems have vital importance as energy source for remote area. On the other hand, a significant portion of such power production is used for cooling purposes. In this scenario, renewable energy sources provide sustainable solution, especially solar energy due to its global availability. Concentrated photovoltaic (CPV) system provides highest efficiency photovoltaic technology, which can operate at x1000 concentration ratio. However, such high concentration ratio requires heat dissipation from the cell area to maintain optimum temperature. This paper discusses the size optimization algorithm of sustainable cooling system using CPVT. Based upon the CPV which is operating at x1000 concentration with back plate liquid cooling, the CPVT system size is optimized to drive a hybrid mechanical vapor compression (MVC) chiller and adsorption chiller, by utilizing both electricity and heat obtained from the solar system. The electrolysis based hydrogen is used as primary energy storage system along with the hot water storage tanks. The micro genetic algorithm (micro-GA) based optimization algorithm is developed to find the optimum size of each component of CPVT-Cooling system with uninterrupted power supply and minimum cost, according to the developed operational strategy. The hybrid system is operated with solar energy system efficiency of 71%.


2019 ◽  
Author(s):  
Jonathan Ogland-Hand ◽  
Marcos W. Miranda ◽  
Jeffrey Bielicki ◽  
Benjamin M. Adams ◽  
Thomas Buscheck ◽  
...  

2021 ◽  
pp. 100764
Author(s):  
Qiao Xu ◽  
Xianglei Liu ◽  
Qingyang Luo ◽  
Yanan Song ◽  
Haolei Wang ◽  
...  

2021 ◽  
Vol 289 ◽  
pp. 116734 ◽  
Author(s):  
Feng Wang ◽  
Lin Zhang ◽  
Qian Zhang ◽  
Jinjiang Yang ◽  
Gaigai Duan ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1001
Author(s):  
Rui Huang ◽  
David C. Luther ◽  
Xianzhi Zhang ◽  
Aarohi Gupta ◽  
Samantha A. Tufts ◽  
...  

Nanoparticles (NPs) provide multipurpose platforms for a wide range of biological applications. These applications are enabled through molecular design of surface coverages, modulating NP interactions with biosystems. In this review, we highlight approaches to functionalize nanoparticles with ”small” organic ligands (Mw < 1000), providing insight into how organic synthesis can be used to engineer NPs for nanobiology and nanomedicine.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Alexey Bondar ◽  
Olga Rybakova ◽  
Josef Melcr ◽  
Jan Dohnálek ◽  
Petro Khoroshyy ◽  
...  

AbstractFluorescence-detected linear dichroism microscopy allows observing various molecular processes in living cells, as well as obtaining quantitative information on orientation of fluorescent molecules associated with cellular features. Such information can provide insights into protein structure, aid in development of genetically encoded probes, and allow determinations of lipid membrane properties. However, quantitating and interpreting linear dichroism in biological systems has been laborious and unreliable. Here we present a set of open source ImageJ-based software tools that allow fast and easy linear dichroism visualization and quantitation, as well as extraction of quantitative information on molecular orientations, even in living systems. The tools were tested on model synthetic lipid vesicles and applied to a variety of biological systems, including observations of conformational changes during G-protein signaling in living cells, using fluorescent proteins. Our results show that our tools and model systems are applicable to a wide range of molecules and polarization-resolved microscopy techniques, and represent a significant step towards making polarization microscopy a mainstream tool of biological imaging.


Author(s):  
Haifei Chen ◽  
Guiqiang Li ◽  
Yueyue Ling ◽  
Jie Fu ◽  
Yunjie Wang ◽  
...  

Author(s):  
S. Kh. Suleimanov ◽  
V. G. Babashov ◽  
M. U. Dzhanklich ◽  
V. G. Dyskin ◽  
M. I. Daskovskii ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document