organic synthesis
Recently Published Documents


TOTAL DOCUMENTS

12484
(FIVE YEARS 1260)

H-INDEX

223
(FIVE YEARS 23)

2022 ◽  
Vol 25 ◽  
pp. 100591
Author(s):  
Dickson Kong ◽  
Anton V. Dolzhenko
Keyword(s):  

Synlett ◽  
2022 ◽  
Author(s):  
Linhong Zuo ◽  
Wusheng Guo

Functionalized ketones and their derivatives are very important building blocks in organic synthesis and material chemistry. The development of novel methodology for the chemo-, regio-, diastereo-, stereo- and enantioselective synthesis of functionalized ketones and their derivatives is the continuous endeavor of organic chemists. Herein we highlight the new approach that was recently initiated and developed by our group for the synthesis of (enantioenriched) ketones and related derivatives based on zwitterionic metal-enolate (ZME) chemistry.


Science ◽  
2022 ◽  
Vol 375 (6577) ◽  
pp. 172-177
Author(s):  
A. Steele ◽  
L. G. Benning ◽  
R. Wirth ◽  
A. Schreiber ◽  
T. Araki ◽  
...  

Abiotic formation of organic molecules Mars rovers have found complex organic molecules in the ancient rocks exposed on the planet’s surface and methane in the modern atmosphere. It is unclear what processes produced these organics, with proposals including both biotic and abiotic sources. Steele et al . analyzed the nanoscale mineralogy of the Mars meteorite ALH 84001 and found evidence of organic synthesis driven by serpentinization and carbonation reactions that occurred during the aqueous alteration of basalt rock by hydrothermal fluids. The results demonstrate that abiotic production of organic molecules operated on Mars 4 billion years ago. —KTS


Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 54
Author(s):  
Laura Riva ◽  
Angelo Davide Lotito ◽  
Carlo Punta ◽  
Alessandro Sacchetti

Herein we report the synthesis of cellulose-based metal-loaded nano-sponges and their application as heterogeneous catalysts in organic synthesis. First, the combination in water solution of TEMPO-oxidized cellulose nanofibers (TOCNF) with branched polyethyleneimine (bPEI) and citric acid (CA), and the thermal treatment of the resulting hydrogel, leads to the synthesis of an eco-safe micro- and nano-porous cellulose nano-sponge (CNS). Subsequently, by exploiting the metal chelation characteristics of CNS, already extensively investigated in the field of environmental decontamination, this material is successfully loaded with Cu (II) or Zn (II) metal ions. Efficiency and homogeneity of metal-loading is confirmed by scanning electron microscopy (SEM) analysis with an energy dispersive X-ray spectroscopy (EDS) detector and by inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis. The resulting materials perform superbly as heterogeneous catalysts for promoting the reaction between aromatic aldehydes and alcohols in the synthesis of aromatic acetals, which play a fundamental role as intermediates in organic synthesis. Optimized conditions allow one to obtain conversions higher than 90% and almost complete selectivity toward acetal products, minimizing, and in some cases eliminating, the formation of carboxylic acid by-products. ICP-OES analysis of the reaction medium allows one to exclude any possible metal-ion release, confirming that catalysis undergoes under heterogeneous conditions. The new metal-loaded CNS can be re-used and recycled five times without losing their catalytic activity.


2022 ◽  
Vol 09 ◽  
Author(s):  
Rubina Shajahan ◽  
Rithwik Sarang ◽  
Anas Saithalavi

The use of proline-based organocatalysts has acquired significant importance in organic synthesis, especially in enantioselective synthesis. Proline and its derivatives are proven to be quite effective chiral organocatalysts for a variety of transformations including the aldol reaction, which is considered as one of the important C-C bond forming reactions in organic synthesis. The use of chiral organocatalysts has several advantages over its metal-mediated analogues. Subsequently, a large number of highly efficient proline-based organocatalysts including polymer-supported chiral analogues have been identified for aldol reaction. The use of polymer-supported organocatalysts exhibited remarkable stability under the reaction conditions and offered the best results particularly in terms of its recyclability and reusability. These potential benefits along with its economic and green chemistry advantages have led to the search for many polymer-supported proline catalysts. In this review, recent developments in exploring various polymer immobilized proline-based chiral organocatalysts for asymmetric aldol reactions are described.


Synthesis ◽  
2022 ◽  
Author(s):  
Dishu Zeng ◽  
Tianbao Yang ◽  
Niu Tang ◽  
Wei Deng ◽  
Jiannan Xiang ◽  
...  

A simple, mild, green and efficient method for the synthesis of 2-aminobenzamides was highly desired in organic synthesis. Herein, we developed an efficient, one-pot strategy for the synthesis of 2-aminobenzamides with high yields irradiated by UV light. 32 examples proceeded successfully by this photo-induced protocol. The yield reached up to 92%. The gram scale was also achieved easily. This building block could be applied in the preparation of quinazolinones derivatives. Amino acid derivatives could be employed smoothly at room temperature. Finally, a plausible mechanism was proposed.


Synthesis ◽  
2022 ◽  
Author(s):  
Valeria Nori ◽  
Arianna Sinibaldi ◽  
Fabio Pesciaioli ◽  
Armando Carlone

Abstract Design of Experiments (DoE) is extensively and routinely used in industry; however, in the last decades, it has been gaining increasing interest in organic synthesis in academia. The use of Chemometrics is an attractive strategy to find the real optimum in chemical reactions, especially when affected by several variables. DoE has been applied in a growing number of synthetic transformations over the years, where it can undoubtedly help in the process optimisation, saving costs and time. This review concisely discusses the chemometric basis of Design of Experiments and highlights several examples in which DoE has been applied in organic synthesis. Table of contents 1 Introduction 2 Chemometric basis of DoE 3 DoE applied in catalysis: examples 4 Conclusions


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Masaya Nakajima ◽  
Yusuke Adachi ◽  
Tetsuhiro Nemoto

AbstractAlthough computational simulation-based natural product syntheses are in their initial stages of development, this concept can potentially become an indispensable resource in the field of organic synthesis. Herein we report the asymmetric total syntheses of several resveratrol dimers based on a comprehensive computational simulation of their biosynthetic pathways. Density functional theory (DFT) calculations suggested inconsistencies in the biosynthesis of vaticahainol A and B that predicted the requirement of structural corrections of these natural products. According to the computational predictions, total syntheses were examined and the correct structures of vaticahainol A and B were confirmed. The established synthetic route was applied to the asymmetric total synthesis of (−)-malibatol A, (−)-vaticahainol B, (+)-vaticahainol A, (+)-vaticahainol C, and (−)-albiraminol B, which provided new insight into the biosynthetic pathway of resveratrol dimers. This study demonstrated that computation-guided organic synthesis can be a powerful strategy to advance the chemical research of natural products.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 449
Author(s):  
Emanuela Calcio Gaudino ◽  
Giorgio Grillo ◽  
Maela Manzoli ◽  
Silvia Tabasso ◽  
Simone Maccagnan ◽  
...  

In the past, the use of mechanochemical methods in organic synthesis was reported as somewhat of a curiosity. However, perceptions have changed over the last two decades, and this technology is now being appreciated as a greener and more efficient synthetic method. The qualified “offer” of ball mills that make use of different set-ups, materials, and dimensions has allowed this technology to mature. Nevertheless, the intrinsic batch nature of mechanochemical methods hinders industrial scale-ups. New studies have found, in reactive extrusion, a powerful technique with which to activate chemical reactions with mechanical forces in a continuous flow. This new environmentally friendly mechanochemical synthetic method may be able to miniaturize production plants with outstanding process intensifications by removing organic solvents and working in a flow mode. Compared to conventional processes, reactive extrusions display high simplicity, safety, and cleanliness, which can be exploited in a variety of applications. This paper presents perspective examples in the better-known areas of reactive extrusions, including oxidation reactions, polymer processing, and biomass conversion. This work should stimulate further developments, as it highlights the versatility of reactive extrusion and the huge potential of solid-phase flow chemistry.


Sign in / Sign up

Export Citation Format

Share Document