scholarly journals The Evolution of Galaxies in the Last 10 GYR

1994 ◽  
Vol 161 ◽  
pp. 649-651
Author(s):  
K. Rakos ◽  
J. Schombert ◽  
T. Maindl ◽  
N. Unger ◽  
P. Obitsch

Rest-frame Strömgren colours are presented for a large number of galaxies in rich clusters between z = 0 and z = 1. Our observations confirm a strong, rest-frame, Butcher-Oemler effect where the fraction of blue galaxies increases from 20% at z < 0.4 to 80% at z = 0.9. After isolating the red objects in each cluster we have compared the mean colour of these old, non-star forming objects with SED models from the literature as a test for passive galaxy evolution in ellipticals. We find good agreement with single burst models which predict an epoch of galaxy formation from z = 2 to 5 (Rakos et al. 1988, 1991; Rakos & Schombert 1993). Although the results demonstrate a great deal of hope for modelling the fine details of colour evolution when our samples are extended into the near- and far-IR, there are reasons to believe that galaxies become, observationally, much more complicated beyond redshifts of 1. The rate of blue colour evolution between 0.6 and 0.9 suggests that by a redshift of 1.5 it will be impossible to tell the difference between galaxies which have completed a single burst at a formation redshift of 2 or ones which are undergoing constant star formation.

2019 ◽  
Vol 487 (4) ◽  
pp. 5649-5665 ◽  
Author(s):  
Anna Zoldan ◽  
Gabriella De Lucia ◽  
Lizhi Xie ◽  
Fabio Fontanot ◽  
Michaela Hirschmann

ABSTRACTWe extend our previous work focused at z ∼ 0, studying the redshift evolution of galaxy dynamical properties using the state-of-the-art semi-analytic model GAEA (GAlaxy Evolution and Assembly): we show that the predicted size–mass relation for discy/star-forming and quiescent galaxies is in good agreement with observational estimates, up to z ∼ 2. Bulge-dominated galaxies have sizes that are offset low with respect to observational estimates, mainly due to our implementation of disc instability at high redshift. At large masses, both quiescent and bulge-dominated galaxies have sizes smaller than observed. We interpret this as a consequence of our most massive galaxies having larger gas masses than observed, and therefore being more affected by dissipation. We argue that a proper treatment of quasar-driven winds is needed to alleviate this problem. Our model compact galaxies have number densities in agreement with observational estimates and they form most of their stars in small and low angular momentum high-z haloes. GAEA predicts that a significant fraction of compact galaxies forming at high-z is bound to merge with larger structures at lower redshifts: therefore they are not the progenitors of normal-size passive galaxies at z = 0. Our model also predicts a stellar–halo size relation that is in good agreement with observational estimates. The ratio between stellar size and halo size is proportional to the halo spin and does not depend on stellar mass but for the most massive galaxies, where active galactic nucleus feedback leads to a significant decrease of the retention factor (from about 80 per cent to 20 per cent).


2019 ◽  
Vol 489 (2) ◽  
pp. 2014-2029 ◽  
Author(s):  
Tetsuya Hashimoto ◽  
Tomotsugu Goto ◽  
Rieko Momose ◽  
Chien-Chang Ho ◽  
Ryu Makiya ◽  
...  

ABSTRACT Galaxies evolve from a blue star-forming phase into a red quiescent one by quenching their star formation activity. In high-density environments, this galaxy evolution proceeds earlier and more efficiently. Therefore, local galaxy clusters are dominated by well-evolved red elliptical galaxies. The fraction of blue galaxies in clusters monotonically declines with decreasing redshift, i.e. the Butcher–Oemler effect. In the local Universe, observed blue fractions of massive clusters are as small as ≲0.2. Here we report a discovery of a ‘blue cluster’ that is a local galaxy cluster with an unprecedentedly high fraction of blue star-forming galaxies yet hosted by a massive dark matter halo. The blue fraction is 0.57, which is 4.0σ higher than those of the other comparison clusters under the same selection and identification criteria. The velocity dispersion of the member galaxies is 510 km s−1, which corresponds to a dark matter halo mass of 2.0$^{+1.9}_{-1.0}\times 10^{14}$ M⊙. The blue fraction of the cluster is more than 4.7σ beyond the standard theoretical predictions including semi-analytic models of galaxy formation. The probability to find such a high blue fraction in an individual cluster is only 0.003 per cent, which challenges the current standard frameworks of the galaxy formation and evolution in the ΛCDM universe. The spatial distribution of galaxies around the blue cluster suggests that filamentary cold gas streams can exist in massive haloes even in the local Universe. However these cold streams have already disappeared in the theoretically simulated local universes.


2020 ◽  
Vol 644 ◽  
pp. A144
Author(s):  
D. Donevski ◽  
A. Lapi ◽  
K. Małek ◽  
D. Liu ◽  
C. Gómez-Guijarro ◽  
...  

The dust-to-stellar mass ratio (Mdust/M⋆) is a crucial, albeit poorly constrained, parameter for improving our understanding of the complex physical processes involved in the production of dust, metals, and stars in galaxy evolution. In this work, we explore trends of Mdust/M⋆ with different physical parameters and using observations of 300 massive dusty star-forming galaxies detected with ALMA up to z ≈ 5. Additionally, we interpret our findings with different models of dusty galaxy formation. We find that Mdust/M⋆ evolves with redshift, stellar mass, specific star formation rates, and integrated dust size, but that evolution is different for main-sequence galaxies than it is for starburst galaxies. In both galaxy populations, Mdust/M⋆ increases until z ∼ 2, followed by a roughly flat trend towards higher redshifts, suggesting efficient dust growth in the distant universe. We confirm that the inverse relation between Mdust/M⋆ and M⋆ holds up to z ≈ 5 and can be interpreted as an evolutionary transition from early to late starburst phases. We demonstrate that the Mdust/M⋆ in starbursts reflects the increase in molecular gas fraction with redshift and attains the highest values for sources with the most compact dusty star formation. State-of-the-art cosmological simulations that include self-consistent dust growth have the capacity to broadly reproduce the evolution of Mdust/M⋆ in main-sequence galaxies, but underestimating it in starbursts. The latter is found to be linked to lower gas-phase metallicities and longer dust-growth timescales relative to observations. The results of phenomenological models based on the main-sequence and starburst dichotomy as well as analytical models that include recipes for rapid metal enrichment are consistent with our observations. Therefore, our results strongly suggest that high Mdust/M⋆ is due to rapid dust grain growth in the metal-enriched interstellar medium. This work highlights the multi-fold benefits of using Mdust/M⋆ as a diagnostic tool for: (1) disentangling main-sequence and starburst galaxies up to z ∼ 5; (2) probing the evolutionary phase of massive objects; and (3) refining the treatment of the dust life cycle in simulations.


2005 ◽  
Vol 201 ◽  
pp. 536-537
Author(s):  
Sukyoung. Yi ◽  
T. Brown ◽  
S. Heap ◽  
I. Hubeny ◽  
W. Landsman ◽  
...  

Pinning down the ages of high redshift galaxies is the most direct way of constraining the galaxy formation epoch. There has been a debate on the age of LBDS 53W091, a red galaxy at z=1.5. The discrepancy in the age estimates of various groups is due to the difference in the population synthesis model. However, there is generally a good agreement among popular models. Polishing the models and assessing their internal uncertainties are crucial in the analysis of high redshift galaxies.


2011 ◽  
Vol 474-476 ◽  
pp. 565-569
Author(s):  
Xi Feng Qin ◽  
Shuang Li ◽  
Feng Xiang Wang ◽  
Yi Liang

In view of the influence of the projected range, the range straggling, and the lateral deviation of ions in materials on the property of device in the fabrication of photoelectric integration devices by ion implantation, the mean projected ranges and range straggling for energetic 200 – 500 keV Nd ions implanted in 6H-SiC were measured by means of Rutherford backscattering followed by spectrum analysis. The measured values are compared with Monte Carlo code (SRIM2006) calculations. It has been found that the measured values of the mean projected range Rp are good agreement with the SRIM calculated values; for the range straggling △Rp, the difference between the experiment data and the calculated results is much higher than that of Rp


Author(s):  
Steven L. Finkelstein

AbstractAlthough the universe at redshifts greater than six represents only the first one billion years (< 10%) of cosmic time, the dense nature of the early universe led to vigorous galaxy formation and evolution activity which we are only now starting to piece together. Technological improvements have, over only the past decade, allowed large samples of galaxies at such high redshifts to be collected, providing a glimpse into the epoch of formation of the first stars and galaxies. A wide variety of observational techniques have led to the discovery of thousands of galaxy candidates at z > 6, with spectroscopically confirmed galaxies out to nearly z = 9. Using these large samples, we have begun to gain a physical insight into the processes inherent in galaxy evolution at early times. In this review, I will discuss (i) the selection techniques for finding distant galaxies, including a summary of previous and ongoing ground and space-based searches, and spectroscopic follow-up efforts, (ii) insights into galaxy evolution gleaned from measures such as the rest-frame ultraviolet luminosity function, the stellar mass function, and galaxy star-formation rates, and (iii) the effect of galaxies on their surrounding environment, including the chemical enrichment of the universe, and the reionisation of the intergalactic medium. Finally, I conclude with prospects for future observational study of the distant universe, using a bevy of new state-of-the-art facilities coming online over the next decade and beyond.


2020 ◽  
Vol 634 ◽  
pp. A97 ◽  
Author(s):  
Y. Khusanova ◽  
O. Le Fèvre ◽  
P. Cassata ◽  
O. Cucciati ◽  
B. C. Lemaux ◽  
...  

Context. The star formation rate density (SFRD) evolution presents an area of great interest in the studies of galaxy evolution and reionization. The current constraints of SFRD at z >  5 are based on the rest-frame UV luminosity functions with the data from photometric surveys. The VIMOS UltraDeep Survey (VUDS) was designed to observe galaxies at redshifts up to ∼6 and opened a window for measuring SFRD at z >  5 from a spectroscopic sample with a well-controlled selection function. Aims. We establish a robust statistical description of the star-forming galaxy population at the end of cosmic HI reionization (5.0 ≤ z ≤ 6.6) from a large sample of 49 galaxies with spectroscopically confirmed redshifts. We determine the rest-frame UV and Lyα luminosity functions and use them to calculate SFRD at the median redshift of our sample z = 5.6. Methods. We selected a sample of galaxies at 5.0 ≤ zspec ≤ 6.6 from the VUDS. We cleaned our sample from low redshift interlopers using ancillary photometric data. We identified galaxies with Lyα either in absorption or in emission, at variance with most spectroscopic samples in the literature where Lyα emitters (LAE) dominate. We determined luminosity functions using the 1/Vmax method. Results. The galaxies in this redshift range exhibit a large range in their properties. A fraction of our sample shows strong Lyα emission, while another fraction shows Lyα in absorption. UV-continuum slopes vary with luminosity, with a large dispersion. We find that star-forming galaxies at these redshifts are distributed along the main sequence in the stellar mass vs. SFR plane, described with a slope α = 0.85 ± 0.05. We report a flat evolution of the specific SFR compared to lower redshift measurements. We find that the UV luminosity function is best reproduced by a double power law, while a fit with a Schechter function is only marginally inferior. The Lyα luminosity function is best fitted with a Schechter function. We derive a logSFRDUV(M⊙ yr−1 Mpc−3) = −1.45+0.06−0.08 and logSFRDLyα(M⊙ yr−1 Mpc−3) = −1.40+0.07−0.08. The SFRD derived from the Lyα luminosity function is in excellent agreement with the UV-derived SFRD after correcting for IGM absorption. Conclusions. Our new SFRD measurements at a mean redshift of z = 5.6 are ∼0.2 dex above the mean SFRD reported in Madau & Dickinson (2014, ARA&A, 52, 415), but in excellent agreement with results from Bouwens et al. (2015a, ApJ, 803, 34). These measurements confirm the steep decline of the SFRD at z >  2. The bright end of the Lyα luminosity function has a high number density, indicating a significant star formation activity concentrated in the brightest LAE at these redshifts. LAE with equivalent width EW > 25 Å contribute to about 75% of the total UV-derived SFRD. While our analysis favors low dust content in 5.0 <  z <  6.6, uncertainties on the dust extinction correction and associated degeneracy in spectral fitting will remain an issue, when estimating the total SFRD until future surveys extending spectroscopy to the NIR rest-frame spectral domain, such as with JWST.


1963 ◽  
Vol 205 (2) ◽  
pp. 351-356 ◽  
Author(s):  
R. A. Huggins ◽  
E. L. Smith ◽  
S. Deavers

Three hundred seventy-two morphine-pentobarbitalized dogs were divided into groups according to the sampling time after injections of T-1824, I131, or both simultaneously. The data were programmed for digital computer analysis. In dogs receiving the tags separately the mean plasma volume was 50.0 ± 0.63 and 49.8 ± 0.72 ml/kg for dye and I131, respectively. Three simultaneous T-1824 and I131-tagged albumin injections were made with samples taken at 5, 10, 15, 20, 30, 45, and 60 min after each injection. Mixing was complete at approximately 5 min. Mean plasma volumes were 52.5 ± 2.24 ml/kg for the dye and 49.3 ± 1.69 ml/kg for the I131. The difference was not significant. In this group there was a good agreement between plasma volumes when calculated from the seven point curve or from three points only, indicating that all points were part of the same straight line. Therefore, a shorter time period with fewer samples is advantageous. Furthermore, when maximum accuracy is not required, the 5-min sample gives a reasonable estimate of plasma volume.


2019 ◽  
Vol 490 (4) ◽  
pp. 5375-5389 ◽  
Author(s):  
I Koutsouridou ◽  
A Cattaneo

ABSTRACT The difference in stellar metallicity between red and blue galaxies with the same mass constrains the time-scale over which red galaxies ceased to form stars. Here we investigate this constraint with the galics 2.0 semi-analytic model of galaxy formation. The advantage of this approach is that the time of pericentric passages for satellite galaxies and the mass-loading factor for galactic winds are not free parameters of the chemical evolution model. The former is determined by the N-body simulation used to construct the merger trees, the latter by the requirement that galics 2.0 should reproduce the stellar mass function of galaxies. When we compare our theoretical predictions with observations, we find that galics 2.0 can reproduce the observed metallicity difference only if quenching is preceded by a burst of star formation, which contributes to the chemical enrichment of the stellar population. Physically, this burst can be explained as tidally induced star formation or as an effect of ram pressure, which not only strips gas from galaxies but also compresses it, accelerating its conversion into stars.


2019 ◽  
Vol 15 (S352) ◽  
pp. 342-346
Author(s):  
Andrew J. Bunker

AbstractI present an overview of the JWST Advanced Deep Extragalactic Survey (JADES), a joint program of the JWST/NIRCam and NIRSpec Guaranteed Time Observations (GTO) teams involving 950 hours of observation. We will target two well-studied fields with excellent supporting data (e.g., from HST-CANDELS): GOODS-North and South, including the Ultra Deep Field. The science goal of JADES is to chart galaxy evolution at z > 2, and potentially out to z > 10, using the rest-frame optical and near-IR though observations from ≍ 1–5μm. Multi-colour NIRCam imaging with 9 filters will enable photometric redshifts and the application of the Lyman break technique out to unprecedented distances. NIRSpec spectroscopy (with spectral resolving powers of R = 100, 1000 & 2700) will measure secure spectroscopic redshifts of the photometrically-selected population, as well as stellar continuum slopes in the UV rest-frame, and hence study the role of dust, stellar population age, and other effects. Measuring emission lines can constrain the dust extinction, star formation rates, metallicity, chemical abundances, ionization and excitation mechanism in high redshift galaxies. Coupling NIRCam and NIRSpec observations will determine stellar populations (age, star formation histories, abundances) of galaxies and provide the information to correct their broad-band spectral energy distribution for likely line contamination. Potentially we can search for signatures of Population III stars such as HeII. We can address the contribution of star-forming galaxies at z > 7 to reionization by determining the faint end slope of the luminosity function and investigating the escape fraction of ionizing photons by comparing the UV stellar continuum with the Balmer-line fluxes.


Sign in / Sign up

Export Citation Format

Share Document