cosmic time
Recently Published Documents


TOTAL DOCUMENTS

507
(FIVE YEARS 214)

H-INDEX

46
(FIVE YEARS 11)

Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 41
Author(s):  
Viktor D. Stasenko ◽  
Alexander A. Kirillov ◽  
Konstantin M. Belotsky

The PBH clusters can be sources of gravitational waves, and the merger rate depends on the spatial distribution of PBHs in the cluster which changes over time. It is well known that gravitational collisional systems experience the core collapse that leads to significant increase of the central density and shrinking of the core. After core collapse, the cluster expands almost self-similarly (i.e., density profile extends in size without changing its shape). These dynamic processes affect the merger rate of PBHs. In this paper, the dynamics of the PBH cluster is considered using the Fokker–Planck equation. We calculate the merger rate of PBHs on cosmic time scales and show that its time dependence has a unique signature. Namely, it grows by about an order of magnitude at the moment of core collapse which depends on the characteristics of the cluster, and then decreases according to the dependence R∝t−1.48. It was obtained for monochromatic and power-law PBH mass distributions with some fixed parameters. Obtained results can be used to test the model of the PBH clusters via observation of gravitational waves at high redshift.


2022 ◽  
Vol 21 (12) ◽  
pp. 317
Author(s):  
Gargee Chakraborty ◽  
Surajit Chattopadhyay ◽  
Ertan Güdekli

Abstract The work reported in this paper demonstrates the cosmology of f(Q) gravity and the reconstruction of various associated parameters with different versions of holographic dark energy with generalized cut-offs, where Q = 6 H 2. The Universe is considered to be filled with viscous fluid characterized by a viscous pressure Π = – 3 H ξ, where ξ = ξ 0 + ξ 1 H + ξ 2 ( H ˙ + H 2 ) and H is the Hubble parameter. Considering the power law form of expansion, we have derived the expression of f(Q) under a non-viscous holographic framework and it is then extended to viscous cosmological settings with extended generalized holographic Ricci dark energy. The forms of f(Q) for both the cases are found to be monotonically increasing functions of Q. In the viscous holographic framework, f(Q) is reconstructed as a function of cosmic time t and is found to stay at a positive level with Nojiri-Odintsov cut-off. In these cosmological settings, the slow roll parameters are computed and a scope of exit from inflation and quasi-exponential expansion are found to be available. Finally, it is observed that warm inflationary expansion can be obtained from this model.


2022 ◽  
Vol 924 (1) ◽  
pp. 7
Author(s):  
Visal Sok ◽  
Adam Muzzin ◽  
Pascale Jablonka ◽  
Z. Cemile Marsan ◽  
Vivian Y. Y. Tan ◽  
...  

Abstract Compact star-forming clumps observed in distant galaxies are often suggested to play a crucial role in galaxy assembly. In this paper, we use a novel approach of applying finite-resolution deconvolution on ground-based images of the COSMOS field to resolve 20,185 star-forming galaxies (SFGs) at 0.5 < z < 2 to an angular resolution of 0.″3 and study their clump fractions. A comparison between the deconvolved images and HST images across four different filters shows good agreement and validates image deconvolution. We model spectral energy distributions using the deconvolved 14-band images to provide resolved surface brightness and stellar-mass density maps for these galaxies. We find that the fraction of clumpy galaxies decreases with increasing stellar masses and with increasing redshift: from ∼30% at z ∼ 0.7 to ∼50% at z ∼ 1.7. Using abundance matching, we also trace the progenitors for galaxies at z ∼ 0.7 and measure the fractional mass contribution of clumps toward their total mass budget. Clumps are observed to have a higher fractional mass contribution toward galaxies at higher redshift: increasing from ∼1% at z ∼ 0.7 to ∼5% at z ∼ 1.7. Finally, the majority of clumpy SFGs have higher specific star formation rates (sSFR) compared to the average SFGs at fixed stellar mass. We discuss the implication of this result for in situ clump formation due to disk instability.


2021 ◽  
Author(s):  
Anvar Shukurov ◽  
Kandaswamy Subramanian

Magnetic fields permeate space and affect many major astrophysical phenomena, but they are often ignored due to their perceived complexity. This self-contained introduction to astrophysical magnetic fields provides both a comprehensive review of the current state of the subject and a critical discussion of the latest research. It presents our knowledge of magnetic fields from the Early Universe, their evolution in cosmic time through to their roles in present-day galaxies, galaxy clusters and the wider intergalactic medium, with attention given to both theory and observations. This volume also contains an extensive introduction into magnetohydrodynamics, numerous worked examples, observational and mathematical techniques and interpretations of the observations. Its review of our current knowledge, with an emphasis on results that are likely to form the basis for future progress, benefits a broad audience of advanced students and active researchers, including those from fields such as cosmology and general relativity.


2021 ◽  
Vol 923 (1) ◽  
pp. 46
Author(s):  
Shuang Liu ◽  
Yizhou Gu ◽  
Qirong Yuan ◽  
Shiying Lu ◽  
Min Bao ◽  
...  

Abstract To figure out the effect of stellar mass and local environment on morphological transformation and star formation quenching in galaxies, we use the massive (M * ≥ 1010 M ⊙) galaxies at 0.5 ≤ z ≤ 2.5 in five fields of 3D-HST/CANDELS. Based on the UVJ diagnosis and the possibility of possessing a spheroid, our sample of massive galaxies is classified into four populations: quiescent early-type galaxies (qEs), quiescent late-type galaxies (qLs), star-forming early-type galaxies (sEs), and star-forming late-type galaxies (sLs). It is found that the quiescent fraction is significantly elevated at the high ends of mass and local environmental overdensity, which suggests a clear dependence of quenching on both mass and local environment. Over cosmic time, the mass dependence of galaxy quiescence decreases while the local environment dependence increases. The early-type fraction is found to be larger only at the high-mass end, indicating an evident mass dependence of morphological transformation. This mass dependence becomes more significant at lower redshifts. Among the four populations, the fraction of active galactic nuclei (AGNs) in the qLs peaks at 2 < z ≤ 2.5, and rapidly declines with cosmic time. The sEs are found to have higher AGN fractions of 20%–30% at 0.5 ≤ z < 2 . The redshift evolution of AGN fractions in the qLs and sEs suggests that AGN feedback could have played important roles in the formation of the qLs and sEs.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Patrocinio Pérez ◽  
Ulises Nucamendi ◽  
Roberto De Arcia

AbstractWe apply the tools of the dynamical system theory in order to revisit and uncover the structure of a nongravitational interaction between pressureless dark matter and dark energy described by a scalar field $$\phi $$ ϕ . For a coupling function $$Q = -(\alpha d\rho _m/dt + \beta d\rho _\phi /dt )$$ Q = - ( α d ρ m / d t + β d ρ ϕ / d t ) , where t is the cosmic time, we have found that it can be rewritten in the form $$Q = 3H (\alpha \rho _m + \beta (d\phi /dt)^2 )/(1-\alpha +\beta )$$ Q = 3 H ( α ρ m + β ( d ϕ / d t ) 2 ) / ( 1 - α + β ) , so that its dependence on the dark matter density and on the kinetic term of the scalar field is linear and proportional to the Hubble parameter. We analyze the scenarios $$\alpha =0$$ α = 0 , $$\alpha = \beta $$ α = β and $$\alpha = -\beta $$ α = - β , separately and in order to describe the cosmological evolution we have calculated various observables. A notable result of this work is that, unlike for the noninteracting scalar field with exponential potential where five critical points appear, in the case studied here, with the exception of the matter dominated solution, the remaining singular points are transformed into scaling solutions enriching the phase space. It is shown that for $$\alpha \ne 0$$ α ≠ 0 , a separatrix arises modifying prominently the structure of the phase space. This represents a novel feature no mentioned before in the literature.


2021 ◽  
Vol 2021 (12) ◽  
pp. 006
Author(s):  
Wilfried Buchmüller ◽  
Valerie Domcke ◽  
Kai Schmitz

Abstract A metastable cosmic-string network is a generic consequence of many grand unified theories (GUTs) when combined with cosmic inflation. Metastable cosmic strings are not topologically stable, but decay on cosmic time scales due to pair production of GUT monopoles. This leads to a network consisting of metastable long strings on superhorizon scales as well as of string loops and segments on subhorizon scales. We compute for the first time the complete stochastic gravitational-wave background (SGWB) arising from all these network constituents, including several technical improvements to both the derivation of the loop and segment contributions. We find that the gravitational waves emitted by string loops provide the main contribution to the gravitational-wave spectrum in the relevant parameter space. The resulting spectrum is consistent with the tentative signal observed by the NANOGrav and Parkes pulsar timing collaborations for a string tension of G μ ∼ 10-11…-7 and has ample discovery space for ground- and space-based detectors. For GUT-scale string tensions, G μ ∼ 10-8…-7, metastable strings predict a SGWB in the LIGO-Virgo-KAGRA band that could be discovered in the near future.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Binaya K. Bishi ◽  
Aroonkumar Beesham ◽  
Kamal L. Mahanta

Abstract In this work, we have developed FLRW cosmological models in f(R, T) gravity. The solution of the modified field equations are obtained under the newly proposed Bakry and Shafeek, “The periodic universe with varying deceleration parameter of the second degree,” Astrophys. Space Sci., vol. 364, p. 135, 2019, quadratic form of the deceleration parameter. Further, we have discussed the state-finder parameter, om-diagnostic analysis and energy conditions of the proposed model. The variation of deceleration parameter with respect to cosmic time and red-shift is consistent with observational data.


2021 ◽  
Vol 923 (2) ◽  
pp. 267
Author(s):  
Kyle G. Dettman ◽  
Saurabh W. Jha ◽  
Mi Dai ◽  
Ryan J. Foley ◽  
Armin Rest ◽  
...  

Abstract The ejecta velocities of Type Ia supernovae (SNe Ia), as measured by the Si ii λ6355 line, have been shown to correlate with other supernova properties, including color and standardized luminosity. We investigate these results using the Foundation Supernova Survey, with a spectroscopic data release presented here, and photometry analyzed with the SALT2 light-curve fitter. We find that the Foundation data do not show significant evidence for an offset in color between SNe Ia with high and normal photospheric velocities, with Δc = 0.004 ± 0.015. Our SALT2 analysis does show evidence for redder high-velocity SNe Ia in other samples, including objects from the Carnegie Supernova Project, with a combined sample yielding Δc = 0.018 ± 0.008. When split on velocity, the Foundation SNe Ia also do not show a significant difference in Hubble diagram residual, ΔHR = 0.015 ± 0.049 mag. Intriguingly, we find that SN Ia ejecta velocity information may be gleaned from photometry, particularly in redder optical bands. For high-redshift SNe Ia, these rest-frame red wavelengths will be observed by the Nancy Grace Roman Space Telescope. Our results are in line with previous work that suggests SN Ia host-galaxy stellar mass is correlated with ejecta velocity: high-velocity SNe Ia are found nearly exclusively in high-stellar-mass hosts. However, host-galaxy properties alone do not explain velocity-dependent differences in supernova colors and luminosities across samples. Measuring and understanding the connection between intrinsic explosion properties and supernova environments, across cosmic time, will be important for precision cosmology with SNe Ia.


2021 ◽  
Vol 922 (2) ◽  
pp. 196
Author(s):  
Taehyun Kim ◽  
E. Athanassoula ◽  
Kartik Sheth ◽  
Albert Bosma ◽  
Myeong-Gu Park ◽  
...  

Abstract We explore the cosmic evolution of the bar length, strength, and light deficit around the bar for 379 barred galaxies at 0.2 < z ≤ 0.835 using F814W images from the COSMOS survey. Our sample covers galaxies with stellar masses 10.0 ≤ log ( M * / M ⊙ ) ≤ 11.4 and various Hubble types. The bar length is strongly related to the galaxy mass, the disk scale length (h), R 50, and R 90, where the last two are the radii containing 50% and 90% of total stellar mass, respectively. Bar length remains almost constant, suggesting little or no evolution in bar length over the last 7 Gyr. The normalized bar lengths (R bar/h, R bar/R 50, and R bar/R 90) do not show any clear cosmic evolution. Also, the bar strength (A 2 and Q b ) and the light deficit around the bar reveal little or no cosmic evolution. The constancy of the normalized bar lengths over cosmic time implies that the evolution of bars and of disks is strongly linked over all times. We discuss our results in the framework of predictions from numerical simulations. We conclude there is no strong disagreement between our results and up-to-date simulations.


Sign in / Sign up

Export Citation Format

Share Document