scholarly journals Cosmological Applications of Gravitational Lensing

1996 ◽  
Vol 168 ◽  
pp. 209-217
Author(s):  
Peter Schneider

It was recognized very early that the gravitational lens effect can be used as an efficient cosmological tool. Of the many researchers who foresaw the use of lensing, F. Zwicky and S. Refsdal should be explicitly mentioned. The perhaps most accurate predictions and foresights by these two authors are as follows: Zwicky estimated the probability that a distant object is multiply imaged to be about 1/400, and thus that the observation of this effect is “a certainty” [73] – his value, which was obtained by a very crude reasoning, is in fact very close to current estimates of the lensing probability of high-redshift QSOs. He predicted that the magnification caused by gravitational light deflection will allow a “deeper look” into the universe –in fact, the spectroscopy of very faint galaxies which are imaged into giant luminous arcs have yielded spectral information which would be very difficult to obtain without these ‘natural telescopes’. And third, Zwicky saw that gravitational lenses may be used to determine the mass of distant extragalactic objects[72] – in fact, the mass determination of clusters masses from giant luminous arcs is as least as accurate as other methods, but does not rely on special assumptions (like spherical symmetry, virial or thermal equilibrium) inherent in other methods, and the determination of the mass within the inner 0.9 arcseconds of the lensing galaxy in the quadruple QSO 2237+0305 to within 2% [52] is the most accurate extragalactic mass determination known. Refsdal predicted the use of gravitational lenses for determining cosmological parameters and for testing cosmological theories [48][49] – we shall return to these issues below.

1999 ◽  
Vol 183 ◽  
pp. 241-241
Author(s):  
Hideki Asada

Most of methods to determine the cosmological parameters by using the gravitational lensing are based on the following three typical observations; (1) the image separation, (2) the lensing statistics and (3) the time delay. For the accurate estimation of the cosmological parameter, it is of great importance to clarify the relation between the observation in the realistic universe and the determination of the cosmological parameters. In particular, it has been discussed by many authors that inhomogeneities of the universe may affect the cosmological tests.


2012 ◽  
Vol 8 (S289) ◽  
pp. 331-338
Author(s):  
S. H. Suyu

AbstractThe time delays between the multiple images of a strong gravitational-lens system, together with a model of the lens-mass distribution, provide a one-step determination of the time-delay distance, and thus a measure of cosmological parameters, particularly the Hubble constant, H0. I review the recent advances in measuring time-delay distances, and present the current status of cosmological constraints based on gravitational-lens time delays. In particular, I report the time-delay distance measurements of two gravitational lenses and their implication for cosmology from a recent study by Suyuet al.


Author(s):  
Dipak Munshi ◽  
Patrick Valageas

Weak gravitational lensing is responsible for the shearing and magnification of the images of high-redshift sources due to the presence of intervening mass. Since the lensing effects arise from deflections of the light rays due to fluctuations of the gravitational potential, they can be directly related to the underlying density field of the large-scale structures. Weak gravitational surveys are complementary to both galaxy surveys and cosmic microwave background observations as they probe unbiased nonlinear matter power spectra at medium redshift. Ongoing CMBR experiments such as WMAP and a future Planck satellite mission will measure the standard cosmological parameters with unprecedented accuracy. The focus of attention will then shift to understanding the nature of dark matter and vacuum energy: several recent studies suggest that lensing is the best method for constraining the dark energy equation of state. During the next 5 year period, ongoing and future weak lensing surveys such as the Joint Dark Energy Mission (JDEM; e.g. SNAP) or the Large-aperture Synoptic Survey Telescope will play a major role in advancing our understanding of the universe in this direction. In this review article, we describe various aspects of probing the matter power spectrum and the bispectrum and other related statistics with weak lensing surveys. This can be used to probe the background dynamics of the universe as well as the nature of dark matter and dark energy.


Author(s):  
Nial R Tanvir ◽  
Páll Jakobsson

The extreme luminosity of gamma-ray bursts and their afterglows means they are detectable, in principle, to very high redshifts. Although the redshift distribution of gamma-ray bursts (GRBs) is difficult to determine, due to incompleteness of present samples, we argue that for Swift-detected bursts, the median redshift is between 2.5 and 3, with a few per cent probably at z >6. Thus, GRBs are potentially powerful probes of the era of reionization and the sources responsible for it. Moreover, it seems probable that they can provide constraints on the star-formation history of the Universe and may also help in the determination of the cosmological parameters.


2005 ◽  
Vol 201 ◽  
pp. 245-254
Author(s):  
Phillip. Helbig

I review simultaneous constraints on the cosmological parameters Δ0 and Ω0 from gravitational lensing. The emphasis is on systematic extragalactic surveys for strong gravitational lenses, mainly the largest and best-defined such survey, JVAS/CLASS.


1980 ◽  
Vol 5 ◽  
pp. 699-714 ◽  
Author(s):  
Neta A. Bahcall

AbstractClusters and groups of galaxies contain the majority of galaxies in the universe. The rich clusters, while less numerous than the many poor groups, are the densest and largest systems known, and can be easily recognized and studied even at relatively large distances. Their study is important for understanding the formation and evolution of clusters and galaxies, and for a determination of the large-scale structure in the universe.


1992 ◽  
Vol 9 ◽  
pp. 3-32 ◽  
Author(s):  
Sjur Refsdal ◽  
Jean Surdej

AbstractAtmospheric lensing effects deform our view of distant objects; similarly, without any doubt, gravitational lensing perturbs our view of the distant Universe and affects our physical understanding of various classes of extragalactic objects. We summarize here part of the theoretical and observational evidences supporting these claims.After briefly reviewing the history of gravitational lenses, we recall the basic principles underlying the formation of gravitationally lensed images of distant cosmic sources. We describe a simple optical lens experiment, which was actually shown during the oral discourse, and which accounts for all types of presently known gravitational lens systems.The various optical and radio searches for new gravitational lens systems that are being carried out at major observatories are reviewed. State-of-the-art observations of selected gravitational lens systems, obtained with highly performing ground-based telescopes, are then presented. These include several examples of multiply imaged QSO images, radio rings and giant luminous arcs.Through the modeling of these enigmatic objects, we show how it is possible to weigh the mass of distant lensing galaxies as well as to probe the distribution of luminous and dark matter in the Universe. Among the astrophysical and cosmological interests of observing and studying gravitational lenses, we also discuss the possibility of deriving the value of the Hubble parameter Ho from the measurement of a time delay, and how to determine the size and structure of distant quasars via the observational study of micro-lensing effects.At the end of this paper, we conclude on how to possibly achieve major astro-physical and cosmological goals in the near future by dedicating, on a site with good atmospheric seeing conditions, a medium size (2-3 m) telescope to the photometric monitoring of the multiple images of known and suspected gravitational lens systems.


2020 ◽  
Vol 492 (4) ◽  
pp. 4780-4804 ◽  
Author(s):  
Ken Osato ◽  
Masato Shirasaki ◽  
Hironao Miyatake ◽  
Daisuke Nagai ◽  
Naoki Yoshida ◽  
...  

ABSTRACT Cross-correlation analysis of the thermal Sunyaev–Zel’dovich (tSZ) effect and weak gravitational lensing (WL) provides a powerful probe of cosmology and astrophysics of the intracluster medium. We present the measurement of the cross-correlation of tSZ and WL from Planck and Subaru Hyper-Suprime Cam. The combination enables us to study cluster astrophysics at high redshift. We use the tSZ-WL cross-correlation and the tSZ autopower spectrum measurements to place a tight constraint on the hydrostatic mass bias, which is a measure of the degree of non-thermal pressure support in galaxy clusters. With the prior on cosmological parameters derived from the analysis of the cosmic microwave background anisotropies by Planck and taking into account foreground contributions both in the tSZ autopower spectrum and the tSZ-WL cross-correlation, the hydrostatic mass bias is estimated to be $26.9^{+8.9}_{-4.4} {{\ \rm per\ cent}}$ ($68{{\ \rm per\ cent}}$ CL), which is consistent with recent measurements by mass calibration techniques.


1986 ◽  
Vol 119 ◽  
pp. 545-546
Author(s):  
R. Cowsik ◽  
P. Ghosh

Studies of the characteristic properties of gravitational lensing by clusters of galaxies suggest that the dark matter in them is probably smoothly distributed on the scale of the cluster itself, rather than being clumped into halos around individual galaxies.


1999 ◽  
Vol 08 (04) ◽  
pp. 507-517 ◽  
Author(s):  
DEEPAK JAIN ◽  
N. PANCHAPAKESAN ◽  
S. MAHAJAN ◽  
V. B. BHATIA

Identification of gravitationally lensed Gamma Ray Bursts (GRBs) in the BATSE 4B catalog can be used to constrain the average redshift <z> of the GRBs. In this paper we investigate the effect of evolving lenses on the <z> of GRBs in different cosmological models of the universe. The cosmological parameters Ω and Λ have an effect on the <z> of GRBs. The other factor which can change the <z> is the evolution of galaxies. We consider three evolutionary model of galaxies. In particular, we find that the upper limit on <z> of GRBs is higher in evolving model of galaxies as compared to non-evolving models of galaxies.


Sign in / Sign up

Export Citation Format

Share Document